Metamath Proof Explorer


Theorem brbtwn

Description: The binary relation form of the betweenness predicate. The statement A Btwn <. B , C >. should be informally read as " A lies on a line segment between B and C . This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion brbtwn A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C t 0 1 i 1 N A i = 1 t B i + t C i

Proof

Step Hyp Ref Expression
1 df-btwn Btwn = y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i -1
2 1 breqi A Btwn B C A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i -1 B C
3 opex B C V
4 brcnvg A 𝔼 N B C V A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i -1 B C B C y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i A
5 3 4 mpan2 A 𝔼 N A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i -1 B C B C y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i A
6 5 3ad2ant1 A 𝔼 N B 𝔼 N C 𝔼 N A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i -1 B C B C y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i A
7 df-br B C y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i A B C A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i
8 eleq1 y = B y 𝔼 n B 𝔼 n
9 8 3anbi1d y = B y 𝔼 n z 𝔼 n x 𝔼 n B 𝔼 n z 𝔼 n x 𝔼 n
10 fveq1 y = B y i = B i
11 10 oveq2d y = B 1 t y i = 1 t B i
12 11 oveq1d y = B 1 t y i + t z i = 1 t B i + t z i
13 12 eqeq2d y = B x i = 1 t y i + t z i x i = 1 t B i + t z i
14 13 rexralbidv y = B t 0 1 i 1 n x i = 1 t y i + t z i t 0 1 i 1 n x i = 1 t B i + t z i
15 9 14 anbi12d y = B y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i B 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t z i
16 15 rexbidv y = B n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i n B 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t z i
17 eleq1 z = C z 𝔼 n C 𝔼 n
18 17 3anbi2d z = C B 𝔼 n z 𝔼 n x 𝔼 n B 𝔼 n C 𝔼 n x 𝔼 n
19 fveq1 z = C z i = C i
20 19 oveq2d z = C t z i = t C i
21 20 oveq2d z = C 1 t B i + t z i = 1 t B i + t C i
22 21 eqeq2d z = C x i = 1 t B i + t z i x i = 1 t B i + t C i
23 22 rexralbidv z = C t 0 1 i 1 n x i = 1 t B i + t z i t 0 1 i 1 n x i = 1 t B i + t C i
24 18 23 anbi12d z = C B 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t z i B 𝔼 n C 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t C i
25 24 rexbidv z = C n B 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t z i n B 𝔼 n C 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t C i
26 eleq1 x = A x 𝔼 n A 𝔼 n
27 26 3anbi3d x = A B 𝔼 n C 𝔼 n x 𝔼 n B 𝔼 n C 𝔼 n A 𝔼 n
28 fveq1 x = A x i = A i
29 28 eqeq1d x = A x i = 1 t B i + t C i A i = 1 t B i + t C i
30 29 rexralbidv x = A t 0 1 i 1 n x i = 1 t B i + t C i t 0 1 i 1 n A i = 1 t B i + t C i
31 27 30 anbi12d x = A B 𝔼 n C 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t C i B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i
32 31 rexbidv x = A n B 𝔼 n C 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t B i + t C i n B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i
33 16 25 32 eloprabg B 𝔼 N C 𝔼 N A 𝔼 N B C A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i n B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i
34 simp1 B 𝔼 n C 𝔼 n A 𝔼 n B 𝔼 n
35 simp1 B 𝔼 N C 𝔼 N A 𝔼 N B 𝔼 N
36 eedimeq B 𝔼 n B 𝔼 N n = N
37 34 35 36 syl2anr B 𝔼 N C 𝔼 N A 𝔼 N B 𝔼 n C 𝔼 n A 𝔼 n n = N
38 oveq2 n = N 1 n = 1 N
39 38 raleqdv n = N i 1 n A i = 1 t B i + t C i i 1 N A i = 1 t B i + t C i
40 39 rexbidv n = N t 0 1 i 1 n A i = 1 t B i + t C i t 0 1 i 1 N A i = 1 t B i + t C i
41 37 40 syl B 𝔼 N C 𝔼 N A 𝔼 N B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i t 0 1 i 1 N A i = 1 t B i + t C i
42 41 biimpd B 𝔼 N C 𝔼 N A 𝔼 N B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i t 0 1 i 1 N A i = 1 t B i + t C i
43 42 expimpd B 𝔼 N C 𝔼 N A 𝔼 N B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i t 0 1 i 1 N A i = 1 t B i + t C i
44 43 rexlimdvw B 𝔼 N C 𝔼 N A 𝔼 N n B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i t 0 1 i 1 N A i = 1 t B i + t C i
45 eleenn B 𝔼 N N
46 45 3ad2ant1 B 𝔼 N C 𝔼 N A 𝔼 N N
47 fveq2 n = N 𝔼 n = 𝔼 N
48 47 eleq2d n = N B 𝔼 n B 𝔼 N
49 47 eleq2d n = N C 𝔼 n C 𝔼 N
50 47 eleq2d n = N A 𝔼 n A 𝔼 N
51 48 49 50 3anbi123d n = N B 𝔼 n C 𝔼 n A 𝔼 n B 𝔼 N C 𝔼 N A 𝔼 N
52 51 40 anbi12d n = N B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i B 𝔼 N C 𝔼 N A 𝔼 N t 0 1 i 1 N A i = 1 t B i + t C i
53 52 rspcev N B 𝔼 N C 𝔼 N A 𝔼 N t 0 1 i 1 N A i = 1 t B i + t C i n B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i
54 53 exp32 N B 𝔼 N C 𝔼 N A 𝔼 N t 0 1 i 1 N A i = 1 t B i + t C i n B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i
55 46 54 mpcom B 𝔼 N C 𝔼 N A 𝔼 N t 0 1 i 1 N A i = 1 t B i + t C i n B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i
56 44 55 impbid B 𝔼 N C 𝔼 N A 𝔼 N n B 𝔼 n C 𝔼 n A 𝔼 n t 0 1 i 1 n A i = 1 t B i + t C i t 0 1 i 1 N A i = 1 t B i + t C i
57 33 56 bitrd B 𝔼 N C 𝔼 N A 𝔼 N B C A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i t 0 1 i 1 N A i = 1 t B i + t C i
58 57 3comr A 𝔼 N B 𝔼 N C 𝔼 N B C A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i t 0 1 i 1 N A i = 1 t B i + t C i
59 7 58 syl5bb A 𝔼 N B 𝔼 N C 𝔼 N B C y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i A t 0 1 i 1 N A i = 1 t B i + t C i
60 6 59 bitrd A 𝔼 N B 𝔼 N C 𝔼 N A y z x | n y 𝔼 n z 𝔼 n x 𝔼 n t 0 1 i 1 n x i = 1 t y i + t z i -1 B C t 0 1 i 1 N A i = 1 t B i + t C i
61 2 60 syl5bb A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C t 0 1 i 1 N A i = 1 t B i + t C i