Step |
Hyp |
Ref |
Expression |
1 |
|
df-btwn |
⊢ Btwn = ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } |
2 |
1
|
breqi |
⊢ ( 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ↔ 𝐴 ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 〈 𝐵 , 𝐶 〉 ) |
3 |
|
opex |
⊢ 〈 𝐵 , 𝐶 〉 ∈ V |
4 |
|
brcnvg |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝐴 ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 𝐴 ) ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → ( 𝐴 ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 𝐴 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 𝐴 ) ) |
7 |
|
df-br |
⊢ ( 〈 𝐵 , 𝐶 〉 { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 𝐴 ↔ 〈 〈 𝐵 , 𝐶 〉 , 𝐴 〉 ∈ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } ) |
8 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
9 |
8
|
3anbi1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ) |
10 |
|
fveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) = ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ↔ ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ) |
14 |
13
|
rexralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ) |
15 |
9 14
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ↔ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ) ) |
17 |
|
eleq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
18 |
17
|
3anbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ) |
19 |
|
fveq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑖 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) = ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ↔ ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
23 |
22
|
rexralbidv |
⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
24 |
18 23
|
anbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ↔ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) |
26 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
27 |
26
|
3anbi3d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ) |
28 |
|
fveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
29 |
28
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
30 |
29
|
rexralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
31 |
27 30
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ↔ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) |
32 |
31
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) |
33 |
16 25 32
|
eloprabg |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 〈 𝐵 , 𝐶 〉 , 𝐴 〉 ∈ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) |
34 |
|
simp1 |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ) |
35 |
|
simp1 |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
36 |
|
eedimeq |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑛 = 𝑁 ) |
37 |
34 35 36
|
syl2anr |
⊢ ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → 𝑛 = 𝑁 ) |
38 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
39 |
38
|
raleqdv |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
41 |
37 40
|
syl |
⊢ ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
42 |
41
|
biimpd |
⊢ ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
43 |
42
|
expimpd |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
44 |
43
|
rexlimdvw |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
45 |
|
eleenn |
⊢ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ℕ ) |
46 |
45
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
47 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
48 |
47
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
49 |
47
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
50 |
47
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
51 |
48 49 50
|
3anbi123d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
52 |
51 40
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ↔ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) |
53 |
52
|
rspcev |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
54 |
53
|
exp32 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) ) |
55 |
46 54
|
mpcom |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ) |
56 |
44 55
|
impbid |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
57 |
33 56
|
bitrd |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 〈 𝐵 , 𝐶 〉 , 𝐴 〉 ∈ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
58 |
57
|
3comr |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 〈 𝐵 , 𝐶 〉 , 𝐴 〉 ∈ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
59 |
7 58
|
syl5bb |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝐵 , 𝐶 〉 { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 𝐴 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
60 |
6 59
|
bitrd |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑛 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑦 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑧 ‘ 𝑖 ) ) ) ) } 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
61 |
2 60
|
syl5bb |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐵 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |