Metamath Proof Explorer
		
		
		
		Description:  Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier
       version).  (Contributed by NM, 18-Jun-2014)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						rexlimdvw.1 | 
						⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) )  | 
					
				
					 | 
					Assertion | 
					rexlimdvw | 
					⊢  ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  →  𝜒 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rexlimdvw.1 | 
							⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							a1d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝜓  →  𝜒 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rexlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  →  𝜒 ) )  |