Metamath Proof Explorer


Theorem eedimeq

Description: A point belongs to at most one Euclidean space. (Contributed by Scott Fenton, 1-Jul-2013)

Ref Expression
Assertion eedimeq ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → 𝑁 = 𝑀 )

Proof

Step Hyp Ref Expression
1 eleei ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ )
2 eleei ( 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) → 𝐴 : ( 1 ... 𝑀 ) ⟶ ℝ )
3 fdm ( 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ → dom 𝐴 = ( 1 ... 𝑁 ) )
4 fdm ( 𝐴 : ( 1 ... 𝑀 ) ⟶ ℝ → dom 𝐴 = ( 1 ... 𝑀 ) )
5 3 4 sylan9req ( ( 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ∧ 𝐴 : ( 1 ... 𝑀 ) ⟶ ℝ ) → ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) )
6 1 2 5 syl2an ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) )
7 eleenn ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ℕ )
8 nnuz ℕ = ( ℤ ‘ 1 )
9 7 8 eleqtrdi ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ( ℤ ‘ 1 ) )
10 9 adantr ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → 𝑁 ∈ ( ℤ ‘ 1 ) )
11 fzopth ( 𝑁 ∈ ( ℤ ‘ 1 ) → ( ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) ↔ ( 1 = 1 ∧ 𝑁 = 𝑀 ) ) )
12 10 11 syl ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → ( ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) ↔ ( 1 = 1 ∧ 𝑁 = 𝑀 ) ) )
13 6 12 mpbid ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → ( 1 = 1 ∧ 𝑁 = 𝑀 ) )
14 13 simprd ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → 𝑁 = 𝑀 )