Step |
Hyp |
Ref |
Expression |
1 |
|
eleei |
⊢ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
2 |
|
eleei |
⊢ ( 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) → 𝐴 : ( 1 ... 𝑀 ) ⟶ ℝ ) |
3 |
|
fdm |
⊢ ( 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ → dom 𝐴 = ( 1 ... 𝑁 ) ) |
4 |
|
fdm |
⊢ ( 𝐴 : ( 1 ... 𝑀 ) ⟶ ℝ → dom 𝐴 = ( 1 ... 𝑀 ) ) |
5 |
3 4
|
sylan9req |
⊢ ( ( 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ∧ 𝐴 : ( 1 ... 𝑀 ) ⟶ ℝ ) → ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) ) |
6 |
1 2 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) ) |
7 |
|
eleenn |
⊢ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ℕ ) |
8 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
9 |
7 8
|
eleqtrdi |
⊢ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
11 |
|
fzopth |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) ↔ ( 1 = 1 ∧ 𝑁 = 𝑀 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → ( ( 1 ... 𝑁 ) = ( 1 ... 𝑀 ) ↔ ( 1 = 1 ∧ 𝑁 = 𝑀 ) ) ) |
13 |
6 12
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → ( 1 = 1 ∧ 𝑁 = 𝑀 ) ) |
14 |
13
|
simprd |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑀 ) ) → 𝑁 = 𝑀 ) |