Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
2 |
|
opex |
⊢ 〈 𝐶 , 𝐷 〉 ∈ V |
3 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) |
4 |
3
|
anbi1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) = ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) |
9 |
6 8
|
oveq12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
11 |
10
|
sumeq2sdv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
13 |
4 12
|
anbi12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
15 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 1st ‘ 𝑦 ) = ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ) |
18 |
17
|
fveq1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) |
20 |
19
|
fveq1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) = ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) |
21 |
18 20
|
oveq12d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) = ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
23 |
22
|
sumeq2sdv |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
25 |
16 24
|
anbi12d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
27 |
|
df-cgr |
⊢ Cgr = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑥 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 𝑦 ) ‘ 𝑖 ) − ( ( 2nd ‘ 𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) } |
28 |
1 2 14 26 27
|
brab |
⊢ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
29 |
|
opelxp2 |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) ) |
30 |
29
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) ) |
31 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
32 |
|
eedimeq |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑛 = 𝑁 ) |
33 |
30 31 32
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝑛 = 𝑁 ) |
34 |
33
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝑛 = 𝑁 ) |
35 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
36 |
35
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
37 |
35
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
38 |
36 37
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
39 |
34 38
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
40 |
|
op1stg |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
41 |
40
|
fveq1d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
42 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
43 |
42
|
fveq1d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) |
44 |
41 43
|
oveq12d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) |
45 |
44
|
oveq1d |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) ) |
46 |
45
|
sumeq2sdv |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) ) |
47 |
|
op1stg |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
48 |
47
|
fveq1d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) = ( 𝐶 ‘ 𝑖 ) ) |
49 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
50 |
49
|
fveq1d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) = ( 𝐷 ‘ 𝑖 ) ) |
51 |
48 50
|
oveq12d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) = ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ) |
52 |
51
|
oveq1d |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) |
53 |
52
|
sumeq2sdv |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) |
54 |
46 53
|
eqeqan12d |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
56 |
39 55
|
bitrd |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
57 |
56
|
biimpd |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
58 |
57
|
expimpd |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
59 |
58
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
60 |
|
eleenn |
⊢ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ℕ ) |
61 |
60
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
62 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) |
63 |
|
opelxpi |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) |
64 |
62 63
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
65 |
64
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
66 |
54
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) |
67 |
65 66
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
68 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
69 |
68
|
sqxpeqd |
⊢ ( 𝑛 = 𝑁 → ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) = ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) |
70 |
69
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
71 |
69
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) |
72 |
70 71
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) ) |
73 |
72 38
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
74 |
73
|
rspcev |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
75 |
67 74
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) |
76 |
75
|
exp32 |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) ) |
77 |
61 76
|
mpcom |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) → ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
78 |
59 77
|
impbid |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) − ( ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
79 |
28 78
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) |