Metamath Proof Explorer


Theorem brcgr

Description: The binary relation form of the congruence predicate. The statement <. A , B >. Cgr <. C , D >. should be read informally as "the N dimensional point A is as far from B as C is from D , or "the line segment A B is congruent to the line segment C D . This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion brcgr ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 opex 𝐴 , 𝐵 ⟩ ∈ V
2 opex 𝐶 , 𝐷 ⟩ ∈ V
3 eleq1 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) )
4 3 anbi1d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) )
5 fveq2 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 1st𝑥 ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
6 5 fveq1d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( 1st𝑥 ) ‘ 𝑖 ) = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) )
7 fveq2 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 2nd𝑥 ) = ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
8 7 fveq1d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( 2nd𝑥 ) ‘ 𝑖 ) = ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) )
9 6 8 oveq12d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) = ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) )
10 9 oveq1d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) )
11 10 sumeq2sdv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) )
12 11 eqeq1d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) )
13 4 12 anbi12d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) )
14 13 rexbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ) )
15 eleq1 ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) )
16 15 anbi2d ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) )
17 fveq2 ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( 1st𝑦 ) = ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) )
18 17 fveq1d ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( 1st𝑦 ) ‘ 𝑖 ) = ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) )
19 fveq2 ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( 2nd𝑦 ) = ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) )
20 19 fveq1d ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( 2nd𝑦 ) ‘ 𝑖 ) = ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) )
21 18 20 oveq12d ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) = ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) )
22 21 oveq1d ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) )
23 22 sumeq2sdv ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) )
24 23 eqeq2d ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) )
25 16 24 anbi12d ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ) )
26 25 rexbidv ( 𝑦 = ⟨ 𝐶 , 𝐷 ⟩ → ( ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ) )
27 df-cgr Cgr = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) }
28 1 2 14 26 27 brab ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) )
29 opelxp2 ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) )
30 29 ad2antll ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) )
31 simplrr ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
32 eedimeq ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑛 = 𝑁 )
33 30 31 32 syl2anc ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝑛 = 𝑁 )
34 33 adantlr ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → 𝑛 = 𝑁 )
35 oveq2 ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) )
36 35 sumeq1d ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) )
37 35 sumeq1d ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) )
38 36 37 eqeq12d ( 𝑛 = 𝑁 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) )
39 34 38 syl ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) )
40 op1stg ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
41 40 fveq1d ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) = ( 𝐴𝑖 ) )
42 op2ndg ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
43 42 fveq1d ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) = ( 𝐵𝑖 ) )
44 41 43 oveq12d ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) = ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) )
45 44 oveq1d ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) )
46 45 sumeq2sdv ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) )
47 op1stg ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) = 𝐶 )
48 47 fveq1d ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) = ( 𝐶𝑖 ) )
49 op2ndg ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) = 𝐷 )
50 49 fveq1d ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) = ( 𝐷𝑖 ) )
51 48 50 oveq12d ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) = ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) )
52 51 oveq1d ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) )
53 52 sumeq2sdv ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) )
54 46 53 eqeqan12d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )
55 54 ad2antrr ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )
56 39 55 bitrd ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )
57 56 biimpd ( ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )
58 57 expimpd ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )
59 58 rexlimdva ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )
60 eleenn ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) → 𝑁 ∈ ℕ )
61 60 ad2antll ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
62 opelxpi ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
63 opelxpi ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
64 62 63 anim12i ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) )
65 64 adantr ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) )
66 54 biimpar ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) )
67 65 66 jca ( ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) )
68 fveq2 ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) )
69 68 sqxpeqd ( 𝑛 = 𝑁 → ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) = ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
70 69 eleq2d ( 𝑛 = 𝑁 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) )
71 69 eleq2d ( 𝑛 = 𝑁 → ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) )
72 70 71 anbi12d ( 𝑛 = 𝑁 → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ) )
73 72 38 anbi12d ( 𝑛 = 𝑁 → ( ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ) )
74 73 rspcev ( ( 𝑁 ∈ ℕ ∧ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) )
75 67 74 sylan2 ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) )
76 75 exp32 ( 𝑁 ∈ ℕ → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) → ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ) ) )
77 61 76 mpcom ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) → ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ) )
78 59 77 impbid ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) − ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ‘ 𝑖 ) ) ↑ 2 ) ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )
79 28 78 syl5bb ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑖 ) − ( 𝐵𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶𝑖 ) − ( 𝐷𝑖 ) ) ↑ 2 ) ) )