Metamath Proof Explorer


Definition df-cgr

Description: Define the Euclidean congruence predicate. For details, see brcgr . (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion df-cgr Cgr = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgr Cgr
1 vx 𝑥
2 vy 𝑦
3 vn 𝑛
4 cn
5 1 cv 𝑥
6 cee 𝔼
7 3 cv 𝑛
8 7 6 cfv ( 𝔼 ‘ 𝑛 )
9 8 8 cxp ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) )
10 5 9 wcel 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) )
11 2 cv 𝑦
12 11 9 wcel 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) )
13 10 12 wa ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) )
14 vi 𝑖
15 c1 1
16 cfz ...
17 15 7 16 co ( 1 ... 𝑛 )
18 c1st 1st
19 5 18 cfv ( 1st𝑥 )
20 14 cv 𝑖
21 20 19 cfv ( ( 1st𝑥 ) ‘ 𝑖 )
22 cmin
23 c2nd 2nd
24 5 23 cfv ( 2nd𝑥 )
25 20 24 cfv ( ( 2nd𝑥 ) ‘ 𝑖 )
26 21 25 22 co ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) )
27 cexp
28 c2 2
29 26 28 27 co ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 )
30 17 29 14 csu Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 )
31 11 18 cfv ( 1st𝑦 )
32 20 31 cfv ( ( 1st𝑦 ) ‘ 𝑖 )
33 11 23 cfv ( 2nd𝑦 )
34 20 33 cfv ( ( 2nd𝑦 ) ‘ 𝑖 )
35 32 34 22 co ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) )
36 35 28 27 co ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 )
37 17 36 14 csu Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 )
38 30 37 wceq Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 )
39 13 38 wa ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) )
40 39 3 4 wrex 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) )
41 40 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) }
42 0 41 wceq Cgr = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑥 ) ‘ 𝑖 ) − ( ( 2nd𝑥 ) ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( ( 1st𝑦 ) ‘ 𝑖 ) − ( ( 2nd𝑦 ) ‘ 𝑖 ) ) ↑ 2 ) ) }