Step |
Hyp |
Ref |
Expression |
0 |
|
ccgr |
|- Cgr |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
|
vn |
|- n |
4 |
|
cn |
|- NN |
5 |
1
|
cv |
|- x |
6 |
|
cee |
|- EE |
7 |
3
|
cv |
|- n |
8 |
7 6
|
cfv |
|- ( EE ` n ) |
9 |
8 8
|
cxp |
|- ( ( EE ` n ) X. ( EE ` n ) ) |
10 |
5 9
|
wcel |
|- x e. ( ( EE ` n ) X. ( EE ` n ) ) |
11 |
2
|
cv |
|- y |
12 |
11 9
|
wcel |
|- y e. ( ( EE ` n ) X. ( EE ` n ) ) |
13 |
10 12
|
wa |
|- ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) |
14 |
|
vi |
|- i |
15 |
|
c1 |
|- 1 |
16 |
|
cfz |
|- ... |
17 |
15 7 16
|
co |
|- ( 1 ... n ) |
18 |
|
c1st |
|- 1st |
19 |
5 18
|
cfv |
|- ( 1st ` x ) |
20 |
14
|
cv |
|- i |
21 |
20 19
|
cfv |
|- ( ( 1st ` x ) ` i ) |
22 |
|
cmin |
|- - |
23 |
|
c2nd |
|- 2nd |
24 |
5 23
|
cfv |
|- ( 2nd ` x ) |
25 |
20 24
|
cfv |
|- ( ( 2nd ` x ) ` i ) |
26 |
21 25 22
|
co |
|- ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) |
27 |
|
cexp |
|- ^ |
28 |
|
c2 |
|- 2 |
29 |
26 28 27
|
co |
|- ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) |
30 |
17 29 14
|
csu |
|- sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) |
31 |
11 18
|
cfv |
|- ( 1st ` y ) |
32 |
20 31
|
cfv |
|- ( ( 1st ` y ) ` i ) |
33 |
11 23
|
cfv |
|- ( 2nd ` y ) |
34 |
20 33
|
cfv |
|- ( ( 2nd ` y ) ` i ) |
35 |
32 34 22
|
co |
|- ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) |
36 |
35 28 27
|
co |
|- ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) |
37 |
17 36 14
|
csu |
|- sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) |
38 |
30 37
|
wceq |
|- sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) |
39 |
13 38
|
wa |
|- ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) |
40 |
39 3 4
|
wrex |
|- E. n e. NN ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) |
41 |
40 1 2
|
copab |
|- { <. x , y >. | E. n e. NN ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) } |
42 |
0 41
|
wceq |
|- Cgr = { <. x , y >. | E. n e. NN ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) } |