Metamath Proof Explorer


Definition df-cgr

Description: Define the Euclidean congruence predicate. For details, see brcgr . (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion df-cgr Cgr=xy|nx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgr classCgr
1 vx setvarx
2 vy setvary
3 vn setvarn
4 cn class
5 1 cv setvarx
6 cee class𝔼
7 3 cv setvarn
8 7 6 cfv class𝔼n
9 8 8 cxp class𝔼n×𝔼n
10 5 9 wcel wffx𝔼n×𝔼n
11 2 cv setvary
12 11 9 wcel wffy𝔼n×𝔼n
13 10 12 wa wffx𝔼n×𝔼ny𝔼n×𝔼n
14 vi setvari
15 c1 class1
16 cfz class
17 15 7 16 co class1n
18 c1st class1st
19 5 18 cfv class1stx
20 14 cv setvari
21 20 19 cfv class1stxi
22 cmin class
23 c2nd class2nd
24 5 23 cfv class2ndx
25 20 24 cfv class2ndxi
26 21 25 22 co class1stxi2ndxi
27 cexp class^
28 c2 class2
29 26 28 27 co class1stxi2ndxi2
30 17 29 14 csu classi=1n1stxi2ndxi2
31 11 18 cfv class1sty
32 20 31 cfv class1styi
33 11 23 cfv class2ndy
34 20 33 cfv class2ndyi
35 32 34 22 co class1styi2ndyi
36 35 28 27 co class1styi2ndyi2
37 17 36 14 csu classi=1n1styi2ndyi2
38 30 37 wceq wffi=1n1stxi2ndxi2=i=1n1styi2ndyi2
39 13 38 wa wffx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2
40 39 3 4 wrex wffnx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2
41 40 1 2 copab classxy|nx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2
42 0 41 wceq wffCgr=xy|nx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2