Metamath Proof Explorer


Definition df-cgr

Description: Define the Euclidean congruence predicate. For details, see brcgr . (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion df-cgr Cgr = x y | n x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgr class Cgr
1 vx setvar x
2 vy setvar y
3 vn setvar n
4 cn class
5 1 cv setvar x
6 cee class 𝔼
7 3 cv setvar n
8 7 6 cfv class 𝔼 n
9 8 8 cxp class 𝔼 n × 𝔼 n
10 5 9 wcel wff x 𝔼 n × 𝔼 n
11 2 cv setvar y
12 11 9 wcel wff y 𝔼 n × 𝔼 n
13 10 12 wa wff x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n
14 vi setvar i
15 c1 class 1
16 cfz class
17 15 7 16 co class 1 n
18 c1st class 1 st
19 5 18 cfv class 1 st x
20 14 cv setvar i
21 20 19 cfv class 1 st x i
22 cmin class
23 c2nd class 2 nd
24 5 23 cfv class 2 nd x
25 20 24 cfv class 2 nd x i
26 21 25 22 co class 1 st x i 2 nd x i
27 cexp class ^
28 c2 class 2
29 26 28 27 co class 1 st x i 2 nd x i 2
30 17 29 14 csu class i = 1 n 1 st x i 2 nd x i 2
31 11 18 cfv class 1 st y
32 20 31 cfv class 1 st y i
33 11 23 cfv class 2 nd y
34 20 33 cfv class 2 nd y i
35 32 34 22 co class 1 st y i 2 nd y i
36 35 28 27 co class 1 st y i 2 nd y i 2
37 17 36 14 csu class i = 1 n 1 st y i 2 nd y i 2
38 30 37 wceq wff i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2
39 13 38 wa wff x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2
40 39 3 4 wrex wff n x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2
41 40 1 2 copab class x y | n x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2
42 0 41 wceq wff Cgr = x y | n x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2