Description: Define the Euclidean betweenness predicate. For details, see brbtwn . (Contributed by Scott Fenton, 3-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | df-btwn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cbtwn | |
|
1 | vx | |
|
2 | vz | |
|
3 | vy | |
|
4 | vn | |
|
5 | cn | |
|
6 | 1 | cv | |
7 | cee | |
|
8 | 4 | cv | |
9 | 8 7 | cfv | |
10 | 6 9 | wcel | |
11 | 2 | cv | |
12 | 11 9 | wcel | |
13 | 3 | cv | |
14 | 13 9 | wcel | |
15 | 10 12 14 | w3a | |
16 | vt | |
|
17 | cc0 | |
|
18 | cicc | |
|
19 | c1 | |
|
20 | 17 19 18 | co | |
21 | vi | |
|
22 | cfz | |
|
23 | 19 8 22 | co | |
24 | 21 | cv | |
25 | 24 13 | cfv | |
26 | cmin | |
|
27 | 16 | cv | |
28 | 19 27 26 | co | |
29 | cmul | |
|
30 | 24 6 | cfv | |
31 | 28 30 29 | co | |
32 | caddc | |
|
33 | 24 11 | cfv | |
34 | 27 33 29 | co | |
35 | 31 34 32 | co | |
36 | 25 35 | wceq | |
37 | 36 21 23 | wral | |
38 | 37 16 20 | wrex | |
39 | 15 38 | wa | |
40 | 39 4 5 | wrex | |
41 | 40 1 2 3 | coprab | |
42 | 41 | ccnv | |
43 | 0 42 | wceq | |