Metamath Proof Explorer


Definition df-btwn

Description: Define the Euclidean betweenness predicate. For details, see brbtwn . (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion df-btwn Btwn=xzy|nx𝔼nz𝔼ny𝔼nt01i1nyi=1txi+tzi-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbtwn classBtwn
1 vx setvarx
2 vz setvarz
3 vy setvary
4 vn setvarn
5 cn class
6 1 cv setvarx
7 cee class𝔼
8 4 cv setvarn
9 8 7 cfv class𝔼n
10 6 9 wcel wffx𝔼n
11 2 cv setvarz
12 11 9 wcel wffz𝔼n
13 3 cv setvary
14 13 9 wcel wffy𝔼n
15 10 12 14 w3a wffx𝔼nz𝔼ny𝔼n
16 vt setvart
17 cc0 class0
18 cicc class.
19 c1 class1
20 17 19 18 co class01
21 vi setvari
22 cfz class
23 19 8 22 co class1n
24 21 cv setvari
25 24 13 cfv classyi
26 cmin class
27 16 cv setvart
28 19 27 26 co class1t
29 cmul class×
30 24 6 cfv classxi
31 28 30 29 co class1txi
32 caddc class+
33 24 11 cfv classzi
34 27 33 29 co classtzi
35 31 34 32 co class1txi+tzi
36 25 35 wceq wffyi=1txi+tzi
37 36 21 23 wral wffi1nyi=1txi+tzi
38 37 16 20 wrex wfft01i1nyi=1txi+tzi
39 15 38 wa wffx𝔼nz𝔼ny𝔼nt01i1nyi=1txi+tzi
40 39 4 5 wrex wffnx𝔼nz𝔼ny𝔼nt01i1nyi=1txi+tzi
41 40 1 2 3 coprab classxzy|nx𝔼nz𝔼ny𝔼nt01i1nyi=1txi+tzi
42 41 ccnv classxzy|nx𝔼nz𝔼ny𝔼nt01i1nyi=1txi+tzi-1
43 0 42 wceq wffBtwn=xzy|nx𝔼nz𝔼ny𝔼nt01i1nyi=1txi+tzi-1