Metamath Proof Explorer


Definition df-btwn

Description: Define the Euclidean betweenness predicate. For details, see brbtwn . (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion df-btwn Btwn = x z y | n x 𝔼 n z 𝔼 n y 𝔼 n t 0 1 i 1 n y i = 1 t x i + t z i -1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbtwn class Btwn
1 vx setvar x
2 vz setvar z
3 vy setvar y
4 vn setvar n
5 cn class
6 1 cv setvar x
7 cee class 𝔼
8 4 cv setvar n
9 8 7 cfv class 𝔼 n
10 6 9 wcel wff x 𝔼 n
11 2 cv setvar z
12 11 9 wcel wff z 𝔼 n
13 3 cv setvar y
14 13 9 wcel wff y 𝔼 n
15 10 12 14 w3a wff x 𝔼 n z 𝔼 n y 𝔼 n
16 vt setvar t
17 cc0 class 0
18 cicc class .
19 c1 class 1
20 17 19 18 co class 0 1
21 vi setvar i
22 cfz class
23 19 8 22 co class 1 n
24 21 cv setvar i
25 24 13 cfv class y i
26 cmin class
27 16 cv setvar t
28 19 27 26 co class 1 t
29 cmul class ×
30 24 6 cfv class x i
31 28 30 29 co class 1 t x i
32 caddc class +
33 24 11 cfv class z i
34 27 33 29 co class t z i
35 31 34 32 co class 1 t x i + t z i
36 25 35 wceq wff y i = 1 t x i + t z i
37 36 21 23 wral wff i 1 n y i = 1 t x i + t z i
38 37 16 20 wrex wff t 0 1 i 1 n y i = 1 t x i + t z i
39 15 38 wa wff x 𝔼 n z 𝔼 n y 𝔼 n t 0 1 i 1 n y i = 1 t x i + t z i
40 39 4 5 wrex wff n x 𝔼 n z 𝔼 n y 𝔼 n t 0 1 i 1 n y i = 1 t x i + t z i
41 40 1 2 3 coprab class x z y | n x 𝔼 n z 𝔼 n y 𝔼 n t 0 1 i 1 n y i = 1 t x i + t z i
42 41 ccnv class x z y | n x 𝔼 n z 𝔼 n y 𝔼 n t 0 1 i 1 n y i = 1 t x i + t z i -1
43 0 42 wceq wff Btwn = x z y | n x 𝔼 n z 𝔼 n y 𝔼 n t 0 1 i 1 n y i = 1 t x i + t z i -1