| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cbtwn |  |-  Btwn | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | vz |  |-  z | 
						
							| 3 |  | vy |  |-  y | 
						
							| 4 |  | vn |  |-  n | 
						
							| 5 |  | cn |  |-  NN | 
						
							| 6 | 1 | cv |  |-  x | 
						
							| 7 |  | cee |  |-  EE | 
						
							| 8 | 4 | cv |  |-  n | 
						
							| 9 | 8 7 | cfv |  |-  ( EE ` n ) | 
						
							| 10 | 6 9 | wcel |  |-  x e. ( EE ` n ) | 
						
							| 11 | 2 | cv |  |-  z | 
						
							| 12 | 11 9 | wcel |  |-  z e. ( EE ` n ) | 
						
							| 13 | 3 | cv |  |-  y | 
						
							| 14 | 13 9 | wcel |  |-  y e. ( EE ` n ) | 
						
							| 15 | 10 12 14 | w3a |  |-  ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) | 
						
							| 16 |  | vt |  |-  t | 
						
							| 17 |  | cc0 |  |-  0 | 
						
							| 18 |  | cicc |  |-  [,] | 
						
							| 19 |  | c1 |  |-  1 | 
						
							| 20 | 17 19 18 | co |  |-  ( 0 [,] 1 ) | 
						
							| 21 |  | vi |  |-  i | 
						
							| 22 |  | cfz |  |-  ... | 
						
							| 23 | 19 8 22 | co |  |-  ( 1 ... n ) | 
						
							| 24 | 21 | cv |  |-  i | 
						
							| 25 | 24 13 | cfv |  |-  ( y ` i ) | 
						
							| 26 |  | cmin |  |-  - | 
						
							| 27 | 16 | cv |  |-  t | 
						
							| 28 | 19 27 26 | co |  |-  ( 1 - t ) | 
						
							| 29 |  | cmul |  |-  x. | 
						
							| 30 | 24 6 | cfv |  |-  ( x ` i ) | 
						
							| 31 | 28 30 29 | co |  |-  ( ( 1 - t ) x. ( x ` i ) ) | 
						
							| 32 |  | caddc |  |-  + | 
						
							| 33 | 24 11 | cfv |  |-  ( z ` i ) | 
						
							| 34 | 27 33 29 | co |  |-  ( t x. ( z ` i ) ) | 
						
							| 35 | 31 34 32 | co |  |-  ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) | 
						
							| 36 | 25 35 | wceq |  |-  ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) | 
						
							| 37 | 36 21 23 | wral |  |-  A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) | 
						
							| 38 | 37 16 20 | wrex |  |-  E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) | 
						
							| 39 | 15 38 | wa |  |-  ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) | 
						
							| 40 | 39 4 5 | wrex |  |-  E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) | 
						
							| 41 | 40 1 2 3 | coprab |  |-  { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } | 
						
							| 42 | 41 | ccnv |  |-  `' { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } | 
						
							| 43 | 0 42 | wceq |  |-  Btwn = `' { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } |