Step |
Hyp |
Ref |
Expression |
0 |
|
cbtwn |
|- Btwn |
1 |
|
vx |
|- x |
2 |
|
vz |
|- z |
3 |
|
vy |
|- y |
4 |
|
vn |
|- n |
5 |
|
cn |
|- NN |
6 |
1
|
cv |
|- x |
7 |
|
cee |
|- EE |
8 |
4
|
cv |
|- n |
9 |
8 7
|
cfv |
|- ( EE ` n ) |
10 |
6 9
|
wcel |
|- x e. ( EE ` n ) |
11 |
2
|
cv |
|- z |
12 |
11 9
|
wcel |
|- z e. ( EE ` n ) |
13 |
3
|
cv |
|- y |
14 |
13 9
|
wcel |
|- y e. ( EE ` n ) |
15 |
10 12 14
|
w3a |
|- ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) |
16 |
|
vt |
|- t |
17 |
|
cc0 |
|- 0 |
18 |
|
cicc |
|- [,] |
19 |
|
c1 |
|- 1 |
20 |
17 19 18
|
co |
|- ( 0 [,] 1 ) |
21 |
|
vi |
|- i |
22 |
|
cfz |
|- ... |
23 |
19 8 22
|
co |
|- ( 1 ... n ) |
24 |
21
|
cv |
|- i |
25 |
24 13
|
cfv |
|- ( y ` i ) |
26 |
|
cmin |
|- - |
27 |
16
|
cv |
|- t |
28 |
19 27 26
|
co |
|- ( 1 - t ) |
29 |
|
cmul |
|- x. |
30 |
24 6
|
cfv |
|- ( x ` i ) |
31 |
28 30 29
|
co |
|- ( ( 1 - t ) x. ( x ` i ) ) |
32 |
|
caddc |
|- + |
33 |
24 11
|
cfv |
|- ( z ` i ) |
34 |
27 33 29
|
co |
|- ( t x. ( z ` i ) ) |
35 |
31 34 32
|
co |
|- ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
36 |
25 35
|
wceq |
|- ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
37 |
36 21 23
|
wral |
|- A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
38 |
37 16 20
|
wrex |
|- E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
39 |
15 38
|
wa |
|- ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) |
40 |
39 4 5
|
wrex |
|- E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) |
41 |
40 1 2 3
|
coprab |
|- { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } |
42 |
41
|
ccnv |
|- `' { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } |
43 |
0 42
|
wceq |
|- Btwn = `' { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } |