Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopab.1 | |- A e. _V |
|
opelopab.2 | |- B e. _V |
||
opelopab.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
opelopab.4 | |- ( y = B -> ( ps <-> ch ) ) |
||
brab.5 | |- R = { <. x , y >. | ph } |
||
Assertion | brab | |- ( A R B <-> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopab.1 | |- A e. _V |
|
2 | opelopab.2 | |- B e. _V |
|
3 | opelopab.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | opelopab.4 | |- ( y = B -> ( ps <-> ch ) ) |
|
5 | brab.5 | |- R = { <. x , y >. | ph } |
|
6 | 3 4 5 | brabg | |- ( ( A e. _V /\ B e. _V ) -> ( A R B <-> ch ) ) |
7 | 1 2 6 | mp2an | |- ( A R B <-> ch ) |