Step |
Hyp |
Ref |
Expression |
1 |
|
elntg.1 |
|- P = ( Base ` ( EEG ` N ) ) |
2 |
|
elntg.2 |
|- I = ( Itv ` ( EEG ` N ) ) |
3 |
|
lngid |
|- LineG = Slot ( LineG ` ndx ) |
4 |
|
fvex |
|- ( EEG ` N ) e. _V |
5 |
4
|
a1i |
|- ( N e. NN -> ( EEG ` N ) e. _V ) |
6 |
|
eengstr |
|- ( N e. NN -> ( EEG ` N ) Struct <. 1 , ; 1 7 >. ) |
7 |
|
structn0fun |
|- ( ( EEG ` N ) Struct <. 1 , ; 1 7 >. -> Fun ( ( EEG ` N ) \ { (/) } ) ) |
8 |
6 7
|
syl |
|- ( N e. NN -> Fun ( ( EEG ` N ) \ { (/) } ) ) |
9 |
|
structcnvcnv |
|- ( ( EEG ` N ) Struct <. 1 , ; 1 7 >. -> `' `' ( EEG ` N ) = ( ( EEG ` N ) \ { (/) } ) ) |
10 |
6 9
|
syl |
|- ( N e. NN -> `' `' ( EEG ` N ) = ( ( EEG ` N ) \ { (/) } ) ) |
11 |
10
|
funeqd |
|- ( N e. NN -> ( Fun `' `' ( EEG ` N ) <-> Fun ( ( EEG ` N ) \ { (/) } ) ) ) |
12 |
8 11
|
mpbird |
|- ( N e. NN -> Fun `' `' ( EEG ` N ) ) |
13 |
|
opex |
|- <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. e. _V |
14 |
13
|
prid2 |
|- <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. e. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } |
15 |
|
elun2 |
|- ( <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. e. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } -> <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. e. ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
16 |
14 15
|
ax-mp |
|- <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. e. ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) |
17 |
|
eengv |
|- ( N e. NN -> ( EEG ` N ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
18 |
16 17
|
eleqtrrid |
|- ( N e. NN -> <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. e. ( EEG ` N ) ) |
19 |
|
fvex |
|- ( EE ` N ) e. _V |
20 |
19
|
difexi |
|- ( ( EE ` N ) \ { x } ) e. _V |
21 |
19 20
|
mpoex |
|- ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) e. _V |
22 |
21
|
a1i |
|- ( N e. NN -> ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) e. _V ) |
23 |
3 5 12 18 22
|
strfv2d |
|- ( N e. NN -> ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) = ( LineG ` ( EEG ` N ) ) ) |
24 |
|
eengbas |
|- ( N e. NN -> ( EE ` N ) = ( Base ` ( EEG ` N ) ) ) |
25 |
24 1
|
eqtr4di |
|- ( N e. NN -> ( EE ` N ) = P ) |
26 |
25
|
difeq1d |
|- ( N e. NN -> ( ( EE ` N ) \ { x } ) = ( P \ { x } ) ) |
27 |
26
|
adantr |
|- ( ( N e. NN /\ x e. ( EE ` N ) ) -> ( ( EE ` N ) \ { x } ) = ( P \ { x } ) ) |
28 |
25
|
adantr |
|- ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) -> ( EE ` N ) = P ) |
29 |
|
simpll |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> N e. NN ) |
30 |
|
simplrl |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
31 |
29 25
|
syl |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> ( EE ` N ) = P ) |
32 |
30 31
|
eleqtrd |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> x e. P ) |
33 |
|
simplrr |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> y e. ( ( EE ` N ) \ { x } ) ) |
34 |
33
|
eldifad |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> y e. ( EE ` N ) ) |
35 |
34 31
|
eleqtrd |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> y e. P ) |
36 |
|
simpr |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> z e. ( EE ` N ) ) |
37 |
36 31
|
eleqtrd |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> z e. P ) |
38 |
29 1 2 32 35 37
|
ebtwntg |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> ( z Btwn <. x , y >. <-> z e. ( x I y ) ) ) |
39 |
29 1 2 37 35 32
|
ebtwntg |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> ( x Btwn <. z , y >. <-> x e. ( z I y ) ) ) |
40 |
29 1 2 32 37 35
|
ebtwntg |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> ( y Btwn <. x , z >. <-> y e. ( x I z ) ) ) |
41 |
38 39 40
|
3orbi123d |
|- ( ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) /\ z e. ( EE ` N ) ) -> ( ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) <-> ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) ) ) |
42 |
28 41
|
rabeqbidva |
|- ( ( N e. NN /\ ( x e. ( EE ` N ) /\ y e. ( ( EE ` N ) \ { x } ) ) ) -> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } = { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) |
43 |
25 27 42
|
mpoeq123dva |
|- ( N e. NN -> ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) = ( x e. P , y e. ( P \ { x } ) |-> { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) ) |
44 |
23 43
|
eqtr3d |
|- ( N e. NN -> ( LineG ` ( EEG ` N ) ) = ( x e. P , y e. ( P \ { x } ) |-> { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) ) |