Metamath Proof Explorer


Theorem elntg

Description: The line definition in the Tarski structure for the Euclidean geometry. (Contributed by Thierry Arnoux, 7-Apr-2019)

Ref Expression
Hypotheses elntg.1 P=Base𝔼𝒢N
elntg.2 I=Itv𝔼𝒢N
Assertion elntg NLine𝒢𝔼𝒢N=xP,yPxzP|zxIyxzIyyxIz

Proof

Step Hyp Ref Expression
1 elntg.1 P=Base𝔼𝒢N
2 elntg.2 I=Itv𝔼𝒢N
3 lngid Line𝒢=SlotLine𝒢ndx
4 fvex 𝔼𝒢NV
5 4 a1i N𝔼𝒢NV
6 eengstr N𝔼𝒢NStruct117
7 structn0fun 𝔼𝒢NStruct117Fun𝔼𝒢N
8 6 7 syl NFun𝔼𝒢N
9 structcnvcnv 𝔼𝒢NStruct117𝔼𝒢N-1-1=𝔼𝒢N
10 6 9 syl N𝔼𝒢N-1-1=𝔼𝒢N
11 10 funeqd NFun𝔼𝒢N-1-1Fun𝔼𝒢N
12 8 11 mpbird NFun𝔼𝒢N-1-1
13 opex Line𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzV
14 13 prid2 Line𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzItvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
15 elun2 Line𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzItvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
16 14 15 ax-mp Line𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
17 eengv N𝔼𝒢N=Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
18 16 17 eleqtrrid NLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz𝔼𝒢N
19 fvex 𝔼NV
20 19 difexi 𝔼NxV
21 19 20 mpoex x𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzV
22 21 a1i Nx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzV
23 3 5 12 18 22 strfv2d Nx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz=Line𝒢𝔼𝒢N
24 eengbas N𝔼N=Base𝔼𝒢N
25 24 1 eqtr4di N𝔼N=P
26 25 difeq1d N𝔼Nx=Px
27 26 adantr Nx𝔼N𝔼Nx=Px
28 25 adantr Nx𝔼Ny𝔼Nx𝔼N=P
29 simpll Nx𝔼Ny𝔼Nxz𝔼NN
30 simplrl Nx𝔼Ny𝔼Nxz𝔼Nx𝔼N
31 29 25 syl Nx𝔼Ny𝔼Nxz𝔼N𝔼N=P
32 30 31 eleqtrd Nx𝔼Ny𝔼Nxz𝔼NxP
33 simplrr Nx𝔼Ny𝔼Nxz𝔼Ny𝔼Nx
34 33 eldifad Nx𝔼Ny𝔼Nxz𝔼Ny𝔼N
35 34 31 eleqtrd Nx𝔼Ny𝔼Nxz𝔼NyP
36 simpr Nx𝔼Ny𝔼Nxz𝔼Nz𝔼N
37 36 31 eleqtrd Nx𝔼Ny𝔼Nxz𝔼NzP
38 29 1 2 32 35 37 ebtwntg Nx𝔼Ny𝔼Nxz𝔼NzBtwnxyzxIy
39 29 1 2 37 35 32 ebtwntg Nx𝔼Ny𝔼Nxz𝔼NxBtwnzyxzIy
40 29 1 2 32 37 35 ebtwntg Nx𝔼Ny𝔼Nxz𝔼NyBtwnxzyxIz
41 38 39 40 3orbi123d Nx𝔼Ny𝔼Nxz𝔼NzBtwnxyxBtwnzyyBtwnxzzxIyxzIyyxIz
42 28 41 rabeqbidva Nx𝔼Ny𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz=zP|zxIyxzIyyxIz
43 25 27 42 mpoeq123dva Nx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz=xP,yPxzP|zxIyxzIyyxIz
44 23 43 eqtr3d NLine𝒢𝔼𝒢N=xP,yPxzP|zxIyxzIyyxIz