Metamath Proof Explorer


Theorem strfv2d

Description: Deduction version of strfv2 . (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strfv2d.e E=SlotEndx
strfv2d.s φSV
strfv2d.f φFunS-1-1
strfv2d.n φEndxCS
strfv2d.c φCW
Assertion strfv2d φC=ES

Proof

Step Hyp Ref Expression
1 strfv2d.e E=SlotEndx
2 strfv2d.s φSV
3 strfv2d.f φFunS-1-1
4 strfv2d.n φEndxCS
5 strfv2d.c φCW
6 1 2 strfvnd φES=SEndx
7 cnvcnv2 S-1-1=SV
8 7 fveq1i S-1-1Endx=SVEndx
9 fvex EndxV
10 fvres EndxVSVEndx=SEndx
11 9 10 ax-mp SVEndx=SEndx
12 8 11 eqtri S-1-1Endx=SEndx
13 5 elexd φCV
14 opelxpi EndxVCVEndxCV×V
15 9 13 14 sylancr φEndxCV×V
16 4 15 elind φEndxCSV×V
17 cnvcnv S-1-1=SV×V
18 16 17 eleqtrrdi φEndxCS-1-1
19 funopfv FunS-1-1EndxCS-1-1S-1-1Endx=C
20 3 18 19 sylc φS-1-1Endx=C
21 12 20 eqtr3id φSEndx=C
22 6 21 eqtr2d φC=ES