Metamath Proof Explorer


Theorem cnvcnv

Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003) (Proof shortened by BJ, 26-Nov-2021)

Ref Expression
Assertion cnvcnv A -1 -1 = A V × V

Proof

Step Hyp Ref Expression
1 cnvin A -1 V × V -1 -1 = A -1 -1 V × V -1 -1
2 cnvin A V × V -1 = A -1 V × V -1
3 2 cnveqi A V × V -1 -1 = A -1 V × V -1 -1
4 relcnv Rel A -1 -1
5 df-rel Rel A -1 -1 A -1 -1 V × V
6 4 5 mpbi A -1 -1 V × V
7 relxp Rel V × V
8 dfrel2 Rel V × V V × V -1 -1 = V × V
9 7 8 mpbi V × V -1 -1 = V × V
10 6 9 sseqtrri A -1 -1 V × V -1 -1
11 dfss A -1 -1 V × V -1 -1 A -1 -1 = A -1 -1 V × V -1 -1
12 10 11 mpbi A -1 -1 = A -1 -1 V × V -1 -1
13 1 3 12 3eqtr4ri A -1 -1 = A V × V -1 -1
14 relinxp Rel A V × V
15 dfrel2 Rel A V × V A V × V -1 -1 = A V × V
16 14 15 mpbi A V × V -1 -1 = A V × V
17 13 16 eqtri A -1 -1 = A V × V