Metamath Proof Explorer


Theorem strfv2

Description: A variation on strfv to avoid asserting that S itself is a function, which involves sethood of all the ordered pair components of S . (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strfv2.s SV
strfv2.f FunS-1-1
strfv2.e E=SlotEndx
strfv2.n EndxCS
Assertion strfv2 CVC=ES

Proof

Step Hyp Ref Expression
1 strfv2.s SV
2 strfv2.f FunS-1-1
3 strfv2.e E=SlotEndx
4 strfv2.n EndxCS
5 1 a1i CVSV
6 2 a1i CVFunS-1-1
7 4 a1i CVEndxCS
8 id CVCV
9 3 5 6 7 8 strfv2d CVC=ES