| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvexd |  | 
						
							| 2 |  | simpll |  | 
						
							| 3 |  | simprl |  | 
						
							| 4 |  | eengbas |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 | 3 5 | eleqtrrd |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | simprr |  | 
						
							| 9 | 8 5 | eleqtrrd |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 3 | adantr |  | 
						
							| 12 | 8 | adantr |  | 
						
							| 13 |  | simpr1 |  | 
						
							| 14 |  | simpr3 |  | 
						
							| 15 | 4 | adantr |  | 
						
							| 16 | 14 15 | eleqtrrd |  | 
						
							| 17 | 2 11 12 13 16 | syl13anc |  | 
						
							| 18 |  | simpr2 |  | 
						
							| 19 | 4 | ad2antrr |  | 
						
							| 20 | 18 19 | eleqtrrd |  | 
						
							| 21 |  | simpr3 |  | 
						
							| 22 | 21 19 | eleqtrrd |  | 
						
							| 23 |  | axeuclid |  | 
						
							| 24 | 2 7 10 17 20 22 23 | syl132anc |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 2 25 26 11 21 18 | ebtwntg |  | 
						
							| 28 | 2 25 26 12 13 18 | ebtwntg |  | 
						
							| 29 | 27 28 | 3anbi12d |  | 
						
							| 30 | 19 | adantr |  | 
						
							| 31 | 2 | ad2antrr |  | 
						
							| 32 | 11 | ad2antrr |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 33 30 | eleqtrd |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 12 | ad2antrr |  | 
						
							| 37 | 31 25 26 32 35 36 | ebtwntg |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 | 19 | ad2antrr |  | 
						
							| 40 | 38 39 | eleqtrd |  | 
						
							| 41 | 13 | ad2antrr |  | 
						
							| 42 | 31 25 26 32 40 41 | ebtwntg |  | 
						
							| 43 | 21 | ad2antrr |  | 
						
							| 44 | 31 25 26 35 40 43 | ebtwntg |  | 
						
							| 45 | 37 42 44 | 3anbi123d |  | 
						
							| 46 | 30 45 | rexeqbidva |  | 
						
							| 47 | 19 46 | rexeqbidva |  | 
						
							| 48 | 24 29 47 | 3imtr3d |  | 
						
							| 49 | 48 | ralrimivvva |  | 
						
							| 50 | 49 | ralrimivva |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 | 25 51 26 | istrkge |  | 
						
							| 53 | 1 50 52 | sylanbrc |  |