Description: Define the class of geometries fulfilling Euclid's axiom, Axiom A10 of Schwabhauser p. 13. (Contributed by Thierry Arnoux, 14-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-trkge | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cstrkge | |
|
1 | vf | |
|
2 | cbs | |
|
3 | 1 | cv | |
4 | 3 2 | cfv | |
5 | vp | |
|
6 | citv | |
|
7 | 3 6 | cfv | |
8 | vi | |
|
9 | vx | |
|
10 | 5 | cv | |
11 | vy | |
|
12 | vz | |
|
13 | vu | |
|
14 | vv | |
|
15 | 13 | cv | |
16 | 9 | cv | |
17 | 8 | cv | |
18 | 14 | cv | |
19 | 16 18 17 | co | |
20 | 15 19 | wcel | |
21 | 11 | cv | |
22 | 12 | cv | |
23 | 21 22 17 | co | |
24 | 15 23 | wcel | |
25 | 16 15 | wne | |
26 | 20 24 25 | w3a | |
27 | va | |
|
28 | vb | |
|
29 | 27 | cv | |
30 | 16 29 17 | co | |
31 | 21 30 | wcel | |
32 | 28 | cv | |
33 | 16 32 17 | co | |
34 | 22 33 | wcel | |
35 | 29 32 17 | co | |
36 | 18 35 | wcel | |
37 | 31 34 36 | w3a | |
38 | 37 28 10 | wrex | |
39 | 38 27 10 | wrex | |
40 | 26 39 | wi | |
41 | 40 14 10 | wral | |
42 | 41 13 10 | wral | |
43 | 42 12 10 | wral | |
44 | 43 11 10 | wral | |
45 | 44 9 10 | wral | |
46 | 45 8 7 | wsbc | |
47 | 46 5 4 | wsbc | |
48 | 47 1 | cab | |
49 | 0 48 | wceq | |