Metamath Proof Explorer


Definition df-trkge

Description: Define the class of geometries fulfilling Euclid's axiom, Axiom A10 of Schwabhauser p. 13. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Assertion df-trkge 𝒢TarskiE=f|[˙Basef/p]˙[˙Itvf/i]˙xpypzpupvpuxivuyizxuapbpyxiazxibvaib

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkge class𝒢TarskiE
1 vf setvarf
2 cbs classBase
3 1 cv setvarf
4 3 2 cfv classBasef
5 vp setvarp
6 citv classItv
7 3 6 cfv classItvf
8 vi setvari
9 vx setvarx
10 5 cv setvarp
11 vy setvary
12 vz setvarz
13 vu setvaru
14 vv setvarv
15 13 cv setvaru
16 9 cv setvarx
17 8 cv setvari
18 14 cv setvarv
19 16 18 17 co classxiv
20 15 19 wcel wffuxiv
21 11 cv setvary
22 12 cv setvarz
23 21 22 17 co classyiz
24 15 23 wcel wffuyiz
25 16 15 wne wffxu
26 20 24 25 w3a wffuxivuyizxu
27 va setvara
28 vb setvarb
29 27 cv setvara
30 16 29 17 co classxia
31 21 30 wcel wffyxia
32 28 cv setvarb
33 16 32 17 co classxib
34 22 33 wcel wffzxib
35 29 32 17 co classaib
36 18 35 wcel wffvaib
37 31 34 36 w3a wffyxiazxibvaib
38 37 28 10 wrex wffbpyxiazxibvaib
39 38 27 10 wrex wffapbpyxiazxibvaib
40 26 39 wi wffuxivuyizxuapbpyxiazxibvaib
41 40 14 10 wral wffvpuxivuyizxuapbpyxiazxibvaib
42 41 13 10 wral wffupvpuxivuyizxuapbpyxiazxibvaib
43 42 12 10 wral wffzpupvpuxivuyizxuapbpyxiazxibvaib
44 43 11 10 wral wffypzpupvpuxivuyizxuapbpyxiazxibvaib
45 44 9 10 wral wffxpypzpupvpuxivuyizxuapbpyxiazxibvaib
46 45 8 7 wsbc wff[˙Itvf/i]˙xpypzpupvpuxivuyizxuapbpyxiazxibvaib
47 46 5 4 wsbc wff[˙Basef/p]˙[˙Itvf/i]˙xpypzpupvpuxivuyizxuapbpyxiazxibvaib
48 47 1 cab classf|[˙Basef/p]˙[˙Itvf/i]˙xpypzpupvpuxivuyizxuapbpyxiazxibvaib
49 0 48 wceq wff𝒢TarskiE=f|[˙Basef/p]˙[˙Itvf/i]˙xpypzpupvpuxivuyizxuapbpyxiazxibvaib