Metamath Proof Explorer


Definition df-trkgld

Description: Define the class of geometries fulfilling the lower dimension axiom for dimension n . For such geometries, there are three non-colinear points that are equidistant from n - 1 distinct points. Derived from remarks inTarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013) (Revised by Thierry Arnoux, 23-Nov-2019)

Ref Expression
Assertion df-trkgld Dim𝒢=gn|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkgld classDim𝒢
1 vg setvarg
2 vn setvarn
3 cbs classBase
4 1 cv setvarg
5 4 3 cfv classBaseg
6 vp setvarp
7 cds classdist
8 4 7 cfv classdistg
9 vd setvard
10 citv classItv
11 4 10 cfv classItvg
12 vi setvari
13 vf setvarf
14 13 cv setvarf
15 c1 class1
16 cfzo class..^
17 2 cv setvarn
18 15 17 16 co class1..^n
19 6 cv setvarp
20 18 19 14 wf1 wfff:1..^n1-1p
21 vx setvarx
22 vy setvary
23 vz setvarz
24 vj setvarj
25 c2 class2
26 25 17 16 co class2..^n
27 15 14 cfv classf1
28 9 cv setvard
29 21 cv setvarx
30 27 29 28 co classf1dx
31 24 cv setvarj
32 31 14 cfv classfj
33 32 29 28 co classfjdx
34 30 33 wceq wfff1dx=fjdx
35 22 cv setvary
36 27 35 28 co classf1dy
37 32 35 28 co classfjdy
38 36 37 wceq wfff1dy=fjdy
39 23 cv setvarz
40 27 39 28 co classf1dz
41 32 39 28 co classfjdz
42 40 41 wceq wfff1dz=fjdz
43 34 38 42 w3a wfff1dx=fjdxf1dy=fjdyf1dz=fjdz
44 43 24 26 wral wffj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz
45 12 cv setvari
46 29 35 45 co classxiy
47 39 46 wcel wffzxiy
48 39 35 45 co classziy
49 29 48 wcel wffxziy
50 29 39 45 co classxiz
51 35 50 wcel wffyxiz
52 47 49 51 w3o wffzxiyxziyyxiz
53 52 wn wff¬zxiyxziyyxiz
54 44 53 wa wffj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
55 54 23 19 wrex wffzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
56 55 22 19 wrex wffypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
57 56 21 19 wrex wffxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
58 20 57 wa wfff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
59 58 13 wex wffff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
60 59 12 11 wsbc wff[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
61 60 9 8 wsbc wff[˙distg/d]˙[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
62 61 6 5 wsbc wff[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
63 62 1 2 copab classgn|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz
64 0 63 wceq wffDim𝒢=gn|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙ff:1..^n1-1pxpypzpj2..^nf1dx=fjdxf1dy=fjdyf1dz=fjdz¬zxiyxziyyxiz