Description: Define the class of geometries fulfilling the lower dimension axiom for dimension n . For such geometries, there are three non-colinear points that are equidistant from n - 1 distinct points. Derived from remarks inTarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013) (Revised by Thierry Arnoux, 23-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-trkgld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cstrkgld | |
|
1 | vg | |
|
2 | vn | |
|
3 | cbs | |
|
4 | 1 | cv | |
5 | 4 3 | cfv | |
6 | vp | |
|
7 | cds | |
|
8 | 4 7 | cfv | |
9 | vd | |
|
10 | citv | |
|
11 | 4 10 | cfv | |
12 | vi | |
|
13 | vf | |
|
14 | 13 | cv | |
15 | c1 | |
|
16 | cfzo | |
|
17 | 2 | cv | |
18 | 15 17 16 | co | |
19 | 6 | cv | |
20 | 18 19 14 | wf1 | |
21 | vx | |
|
22 | vy | |
|
23 | vz | |
|
24 | vj | |
|
25 | c2 | |
|
26 | 25 17 16 | co | |
27 | 15 14 | cfv | |
28 | 9 | cv | |
29 | 21 | cv | |
30 | 27 29 28 | co | |
31 | 24 | cv | |
32 | 31 14 | cfv | |
33 | 32 29 28 | co | |
34 | 30 33 | wceq | |
35 | 22 | cv | |
36 | 27 35 28 | co | |
37 | 32 35 28 | co | |
38 | 36 37 | wceq | |
39 | 23 | cv | |
40 | 27 39 28 | co | |
41 | 32 39 28 | co | |
42 | 40 41 | wceq | |
43 | 34 38 42 | w3a | |
44 | 43 24 26 | wral | |
45 | 12 | cv | |
46 | 29 35 45 | co | |
47 | 39 46 | wcel | |
48 | 39 35 45 | co | |
49 | 29 48 | wcel | |
50 | 29 39 45 | co | |
51 | 35 50 | wcel | |
52 | 47 49 51 | w3o | |
53 | 52 | wn | |
54 | 44 53 | wa | |
55 | 54 23 19 | wrex | |
56 | 55 22 19 | wrex | |
57 | 56 21 19 | wrex | |
58 | 20 57 | wa | |
59 | 58 13 | wex | |
60 | 59 12 11 | wsbc | |
61 | 60 9 8 | wsbc | |
62 | 61 6 5 | wsbc | |
63 | 62 1 2 | copab | |
64 | 0 63 | wceq | |