Step |
Hyp |
Ref |
Expression |
0 |
|
cstrkgld |
⊢ DimTarskiG≥ |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
vn |
⊢ 𝑛 |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑔 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
6 |
|
vp |
⊢ 𝑝 |
7 |
|
cds |
⊢ dist |
8 |
4 7
|
cfv |
⊢ ( dist ‘ 𝑔 ) |
9 |
|
vd |
⊢ 𝑑 |
10 |
|
citv |
⊢ Itv |
11 |
4 10
|
cfv |
⊢ ( Itv ‘ 𝑔 ) |
12 |
|
vi |
⊢ 𝑖 |
13 |
|
vf |
⊢ 𝑓 |
14 |
13
|
cv |
⊢ 𝑓 |
15 |
|
c1 |
⊢ 1 |
16 |
|
cfzo |
⊢ ..^ |
17 |
2
|
cv |
⊢ 𝑛 |
18 |
15 17 16
|
co |
⊢ ( 1 ..^ 𝑛 ) |
19 |
6
|
cv |
⊢ 𝑝 |
20 |
18 19 14
|
wf1 |
⊢ 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 |
21 |
|
vx |
⊢ 𝑥 |
22 |
|
vy |
⊢ 𝑦 |
23 |
|
vz |
⊢ 𝑧 |
24 |
|
vj |
⊢ 𝑗 |
25 |
|
c2 |
⊢ 2 |
26 |
25 17 16
|
co |
⊢ ( 2 ..^ 𝑛 ) |
27 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 1 ) |
28 |
9
|
cv |
⊢ 𝑑 |
29 |
21
|
cv |
⊢ 𝑥 |
30 |
27 29 28
|
co |
⊢ ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) |
31 |
24
|
cv |
⊢ 𝑗 |
32 |
31 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑗 ) |
33 |
32 29 28
|
co |
⊢ ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) |
34 |
30 33
|
wceq |
⊢ ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) |
35 |
22
|
cv |
⊢ 𝑦 |
36 |
27 35 28
|
co |
⊢ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) |
37 |
32 35 28
|
co |
⊢ ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) |
38 |
36 37
|
wceq |
⊢ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) |
39 |
23
|
cv |
⊢ 𝑧 |
40 |
27 39 28
|
co |
⊢ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) |
41 |
32 39 28
|
co |
⊢ ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) |
42 |
40 41
|
wceq |
⊢ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) |
43 |
34 38 42
|
w3a |
⊢ ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) |
44 |
43 24 26
|
wral |
⊢ ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) |
45 |
12
|
cv |
⊢ 𝑖 |
46 |
29 35 45
|
co |
⊢ ( 𝑥 𝑖 𝑦 ) |
47 |
39 46
|
wcel |
⊢ 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) |
48 |
39 35 45
|
co |
⊢ ( 𝑧 𝑖 𝑦 ) |
49 |
29 48
|
wcel |
⊢ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) |
50 |
29 39 45
|
co |
⊢ ( 𝑥 𝑖 𝑧 ) |
51 |
35 50
|
wcel |
⊢ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) |
52 |
47 49 51
|
w3o |
⊢ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
53 |
52
|
wn |
⊢ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
54 |
44 53
|
wa |
⊢ ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
55 |
54 23 19
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
56 |
55 22 19
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
57 |
56 21 19
|
wrex |
⊢ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
58 |
20 57
|
wa |
⊢ ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
59 |
58 13
|
wex |
⊢ ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
60 |
59 12 11
|
wsbc |
⊢ [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
61 |
60 9 8
|
wsbc |
⊢ [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
62 |
61 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
63 |
62 1 2
|
copab |
⊢ { 〈 𝑔 , 𝑛 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) } |
64 |
0 63
|
wceq |
⊢ DimTarskiG≥ = { 〈 𝑔 , 𝑛 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑓 ( 𝑓 : ( 1 ..^ 𝑛 ) –1-1→ 𝑝 ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( ∀ 𝑗 ∈ ( 2 ..^ 𝑛 ) ( ( ( 𝑓 ‘ 1 ) 𝑑 𝑥 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑥 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑦 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑦 ) ∧ ( ( 𝑓 ‘ 1 ) 𝑑 𝑧 ) = ( ( 𝑓 ‘ 𝑗 ) 𝑑 𝑧 ) ) ∧ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) } |