Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | flge0nn0 | |- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl | |- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
|
2 | 1 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. ZZ ) |
3 | 0z | |- 0 e. ZZ |
|
4 | flge | |- ( ( A e. RR /\ 0 e. ZZ ) -> ( 0 <_ A <-> 0 <_ ( |_ ` A ) ) ) |
|
5 | 3 4 | mpan2 | |- ( A e. RR -> ( 0 <_ A <-> 0 <_ ( |_ ` A ) ) ) |
6 | 5 | biimpa | |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( |_ ` A ) ) |
7 | elnn0z | |- ( ( |_ ` A ) e. NN0 <-> ( ( |_ ` A ) e. ZZ /\ 0 <_ ( |_ ` A ) ) ) |
|
8 | 2 6 7 | sylanbrc | |- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) |