Metamath Proof Explorer


Theorem flge0nn0

Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005)

Ref Expression
Assertion flge0nn0
|- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 )

Proof

Step Hyp Ref Expression
1 flcl
 |-  ( A e. RR -> ( |_ ` A ) e. ZZ )
2 1 adantr
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. ZZ )
3 0z
 |-  0 e. ZZ
4 flge
 |-  ( ( A e. RR /\ 0 e. ZZ ) -> ( 0 <_ A <-> 0 <_ ( |_ ` A ) ) )
5 3 4 mpan2
 |-  ( A e. RR -> ( 0 <_ A <-> 0 <_ ( |_ ` A ) ) )
6 5 biimpa
 |-  ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( |_ ` A ) )
7 elnn0z
 |-  ( ( |_ ` A ) e. NN0 <-> ( ( |_ ` A ) e. ZZ /\ 0 <_ ( |_ ` A ) ) )
8 2 6 7 sylanbrc
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 )