Metamath Proof Explorer


Theorem flcl

Description: The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 2-Nov-2013)

Ref Expression
Assertion flcl
|- ( A e. RR -> ( |_ ` A ) e. ZZ )

Proof

Step Hyp Ref Expression
1 flval
 |-  ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) )
2 rebtwnz
 |-  ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) )
3 riotacl
 |-  ( E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) e. ZZ )
4 2 3 syl
 |-  ( A e. RR -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) e. ZZ )
5 1 4 eqeltrd
 |-  ( A e. RR -> ( |_ ` A ) e. ZZ )