| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0a.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0b.h |  |-  H = ( ( P - 1 ) / 2 ) | 
						
							| 3 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 4 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 6 |  | nnoddn2prm |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) | 
						
							| 7 |  | nnoddm1d2 |  |-  ( P e. NN -> ( -. 2 || P <-> ( ( P + 1 ) / 2 ) e. NN ) ) | 
						
							| 8 | 7 | biimpa |  |-  ( ( P e. NN /\ -. 2 || P ) -> ( ( P + 1 ) / 2 ) e. NN ) | 
						
							| 9 | 8 | nnnn0d |  |-  ( ( P e. NN /\ -. 2 || P ) -> ( ( P + 1 ) / 2 ) e. NN0 ) | 
						
							| 10 | 6 9 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P + 1 ) / 2 ) e. NN0 ) | 
						
							| 11 | 5 10 | jca |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. ( ZZ>= ` 2 ) /\ ( ( P + 1 ) / 2 ) e. NN0 ) ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> ( P e. ( ZZ>= ` 2 ) /\ ( ( P + 1 ) / 2 ) e. NN0 ) ) | 
						
							| 13 |  | nno |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ ( ( P + 1 ) / 2 ) e. NN0 ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 15 | 2 14 | eqeltrid |  |-  ( ph -> H e. NN ) |