| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 2 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 3 |
2
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 4 |
|
ltnle |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃 ≤ 𝑁 ) ) |
| 5 |
1 3 4
|
syl2anr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃 ≤ 𝑁 ) ) |
| 6 |
|
prmfac1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( ! ‘ 𝑁 ) ) → 𝑃 ≤ 𝑁 ) |
| 7 |
6
|
3exp |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) ) |
| 8 |
7
|
impcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) |
| 9 |
8
|
con3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑃 ≤ 𝑁 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |
| 10 |
5 9
|
sylbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |