| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ! ‘ 𝑥 ) = ( ! ‘ 0 ) ) |
| 2 |
1
|
breq2d |
⊢ ( 𝑥 = 0 → ( 𝑃 ∥ ( ! ‘ 𝑥 ) ↔ 𝑃 ∥ ( ! ‘ 0 ) ) ) |
| 3 |
|
breq2 |
⊢ ( 𝑥 = 0 → ( 𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 0 ) ) |
| 4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = 0 → ( ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ↔ ( 𝑃 ∥ ( ! ‘ 0 ) → 𝑃 ≤ 0 ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ) ↔ ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 0 ) → 𝑃 ≤ 0 ) ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑘 ) ) |
| 7 |
6
|
breq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝑃 ∥ ( ! ‘ 𝑥 ) ↔ 𝑃 ∥ ( ! ‘ 𝑘 ) ) ) |
| 8 |
|
breq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 𝑘 ) ) |
| 9 |
7 8
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ↔ ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ) ↔ ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑃 ∥ ( ! ‘ 𝑥 ) ↔ 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 13 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑃 ≤ 𝑥 ↔ 𝑃 ≤ ( 𝑘 + 1 ) ) ) |
| 14 |
12 13
|
imbi12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ↔ ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ) ↔ ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) |
| 17 |
16
|
breq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑃 ∥ ( ! ‘ 𝑥 ) ↔ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |
| 18 |
|
breq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 𝑁 ) ) |
| 19 |
17 18
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ↔ ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑥 ) → 𝑃 ≤ 𝑥 ) ) ↔ ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) ) ) |
| 21 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 22 |
21
|
breq2i |
⊢ ( 𝑃 ∥ ( ! ‘ 0 ) ↔ 𝑃 ∥ 1 ) |
| 23 |
|
nprmdvds1 |
⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1 ) |
| 24 |
23
|
pm2.21d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∥ 1 → 𝑃 ≤ 0 ) ) |
| 25 |
22 24
|
biimtrid |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 0 ) → 𝑃 ≤ 0 ) ) |
| 26 |
|
facp1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 28 |
27
|
breq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℙ ) |
| 30 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 32 |
31
|
nnzd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ! ‘ 𝑘 ) ∈ ℤ ) |
| 33 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 35 |
34
|
nnzd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 36 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ! ‘ 𝑘 ) ∈ ℤ ∧ ( 𝑘 + 1 ) ∈ ℤ ) → ( 𝑃 ∥ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ↔ ( 𝑃 ∥ ( ! ‘ 𝑘 ) ∨ 𝑃 ∥ ( 𝑘 + 1 ) ) ) ) |
| 37 |
29 32 35 36
|
syl3anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ↔ ( 𝑃 ∥ ( ! ‘ 𝑘 ) ∨ 𝑃 ∥ ( 𝑘 + 1 ) ) ) ) |
| 38 |
28 37
|
bitrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ∥ ( ! ‘ 𝑘 ) ∨ 𝑃 ∥ ( 𝑘 + 1 ) ) ) ) |
| 39 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → 𝑘 ∈ ℝ ) |
| 41 |
40
|
lep1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 42 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℤ ) |
| 44 |
43
|
zred |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℝ ) |
| 45 |
34
|
nnred |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 46 |
|
letr |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( ( 𝑃 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) |
| 47 |
44 40 45 46
|
syl3anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) |
| 48 |
41 47
|
mpan2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ≤ 𝑘 → 𝑃 ≤ ( 𝑘 + 1 ) ) ) |
| 49 |
48
|
imim2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) → ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) |
| 50 |
49
|
com23 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ ( ! ‘ 𝑘 ) → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) |
| 51 |
|
dvdsle |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝑃 ∥ ( 𝑘 + 1 ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) |
| 52 |
43 34 51
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ ( 𝑘 + 1 ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) |
| 53 |
52
|
a1dd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ ( 𝑘 + 1 ) → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) |
| 54 |
50 53
|
jaod |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) ∨ 𝑃 ∥ ( 𝑘 + 1 ) ) → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) |
| 55 |
38 54
|
sylbid |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) |
| 56 |
55
|
com23 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) → ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) |
| 57 |
56
|
ex |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) → ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) ) |
| 58 |
57
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑘 ) → 𝑃 ≤ 𝑘 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ ( 𝑘 + 1 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) ) ) ) |
| 59 |
5 10 15 20 25 58
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) ) |
| 60 |
59
|
3imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( ! ‘ 𝑁 ) ) → 𝑃 ≤ 𝑁 ) |