Step |
Hyp |
Ref |
Expression |
1 |
|
dvdszzq.1 |
⊢ 𝑁 = ( 𝐴 / 𝐵 ) |
2 |
|
dvdszzq.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
3 |
|
dvdszzq.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
dvdszzq.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
5 |
|
dvdszzq.5 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
6 |
|
dvdszzq.6 |
⊢ ( 𝜑 → 𝑃 ∥ 𝐴 ) |
7 |
|
dvdszzq.7 |
⊢ ( 𝜑 → ¬ 𝑃 ∥ 𝐵 ) |
8 |
3
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
9 |
4
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
10 |
|
dvdszrcl |
⊢ ( 𝑃 ∥ 𝐴 → ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
11 |
10
|
simprd |
⊢ ( 𝑃 ∥ 𝐴 → 𝐴 ∈ ℤ ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
13 |
12
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
14 |
8 9 13 5
|
ldiv |
⊢ ( 𝜑 → ( ( 𝑁 · 𝐵 ) = 𝐴 ↔ 𝑁 = ( 𝐴 / 𝐵 ) ) ) |
15 |
1 14
|
mpbiri |
⊢ ( 𝜑 → ( 𝑁 · 𝐵 ) = 𝐴 ) |
16 |
6 15
|
breqtrrd |
⊢ ( 𝜑 → 𝑃 ∥ ( 𝑁 · 𝐵 ) ) |
17 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑁 · 𝐵 ) ↔ ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ) ) |
18 |
17
|
biimpa |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑃 ∥ ( 𝑁 · 𝐵 ) ) → ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ) |
19 |
2 3 4 16 18
|
syl31anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ) |
20 |
|
orcom |
⊢ ( ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ↔ ( 𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁 ) ) |
21 |
|
df-or |
⊢ ( ( 𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁 ) ↔ ( ¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁 ) ) |
22 |
20 21
|
sylbb |
⊢ ( ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) → ( ¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁 ) ) |
23 |
19 7 22
|
sylc |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |