Metamath Proof Explorer


Theorem dvdszzq

Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023)

Ref Expression
Hypotheses dvdszzq.1 N = A B
dvdszzq.2 φ P
dvdszzq.3 φ N
dvdszzq.4 φ B
dvdszzq.5 φ B 0
dvdszzq.6 φ P A
dvdszzq.7 φ ¬ P B
Assertion dvdszzq φ P N

Proof

Step Hyp Ref Expression
1 dvdszzq.1 N = A B
2 dvdszzq.2 φ P
3 dvdszzq.3 φ N
4 dvdszzq.4 φ B
5 dvdszzq.5 φ B 0
6 dvdszzq.6 φ P A
7 dvdszzq.7 φ ¬ P B
8 3 zcnd φ N
9 4 zcnd φ B
10 dvdszrcl P A P A
11 10 simprd P A A
12 6 11 syl φ A
13 12 zcnd φ A
14 8 9 13 5 ldiv φ N B = A N = A B
15 1 14 mpbiri φ N B = A
16 6 15 breqtrrd φ P N B
17 euclemma P N B P N B P N P B
18 17 biimpa P N B P N B P N P B
19 2 3 4 16 18 syl31anc φ P N P B
20 orcom P N P B P B P N
21 df-or P B P N ¬ P B P N
22 20 21 sylbb P N P B ¬ P B P N
23 19 7 22 sylc φ P N