| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 5 |  | gausslemma2d.n | ⊢ 𝑁  =  ( 𝐻  −  𝑀 ) | 
						
							| 6 | 1 2 3 4 | gausslemma2dlem4 | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  mod  𝑃 )  =  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) )  mod  𝑃 ) ) | 
						
							| 8 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 9 | 1 2 3 4 | gausslemma2dlem2 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 ) ) | 
						
							| 11 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 ) ) | 
						
							| 12 | 11 | expcom | ⊢ ( 𝑘  ∈  ( 1 ... 𝑀 )  →  ( ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 ) ) ) | 
						
							| 14 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 15 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑘  ∈  ( 1 ... 𝑀 )  →  2  ∈  ℤ ) | 
						
							| 17 | 14 16 | zmulcld | ⊢ ( 𝑘  ∈  ( 1 ... 𝑀 )  →  ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 19 |  | eleq1 | ⊢ ( ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 )  →  ( ( 𝑅 ‘ 𝑘 )  ∈  ℤ  ↔  ( 𝑘  ·  2 )  ∈  ℤ ) ) | 
						
							| 20 | 18 19 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) ) | 
						
							| 21 | 13 20 | syld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑘  ·  2 )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) ) | 
						
							| 22 | 10 21 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 23 | 8 22 | fprodzcl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 24 |  | fzfid | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝐻 )  ∈  Fin ) | 
						
							| 25 | 1 2 3 4 | gausslemma2dlem3 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ∀ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 27 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) )  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 28 | 27 | expcom | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  ( ∀ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( ∀ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 30 | 1 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 31 | 30 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 32 |  | elfzelz | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  𝑘  ∈  ℤ ) | 
						
							| 33 | 15 | a1i | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  2  ∈  ℤ ) | 
						
							| 34 | 32 33 | zmulcld | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 35 |  | zsubcl | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝑘  ·  2 )  ∈  ℤ )  →  ( 𝑃  −  ( 𝑘  ·  2 ) )  ∈  ℤ ) | 
						
							| 36 | 31 34 35 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑃  −  ( 𝑘  ·  2 ) )  ∈  ℤ ) | 
						
							| 37 |  | eleq1 | ⊢ ( ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) )  →  ( ( 𝑅 ‘ 𝑘 )  ∈  ℤ  ↔  ( 𝑃  −  ( 𝑘  ·  2 ) )  ∈  ℤ ) ) | 
						
							| 38 | 36 37 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) ) | 
						
							| 39 | 29 38 | syld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( ∀ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) ) | 
						
							| 40 | 26 39 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 41 | 24 40 | fprodzcl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 42 | 41 | zred | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 43 |  | nnoddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 44 |  | nnrp | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ+ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  𝑃  ∈  ℝ+ ) | 
						
							| 46 | 1 43 45 | 3syl | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 47 |  | modmulmodr | ⊢ ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ∈  ℤ  ∧  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) )  mod  𝑃 ) ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ∈  ℤ  ∧  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) )  mod  𝑃 )  =  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 ) )  mod  𝑃 ) ) | 
						
							| 49 | 23 42 46 48 | syl3anc | ⊢ ( 𝜑  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) )  mod  𝑃 )  =  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 ) )  mod  𝑃 ) ) | 
						
							| 50 | 1 2 3 4 5 | gausslemma2dlem5 | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  mod  𝑃 ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 ) )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  mod  𝑃 ) ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝜑  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  mod  𝑃 ) )  mod  𝑃 ) ) | 
						
							| 53 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℝ ) | 
						
							| 55 | 1 4 2 5 | gausslemma2dlem0h | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 56 | 54 55 | reexpcld | ⊢ ( 𝜑  →  ( - 1 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 57 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 58 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  2  ∈  ℤ ) | 
						
							| 59 | 57 58 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 60 | 24 59 | fprodzcl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 61 | 60 | zred | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 )  ∈  ℝ ) | 
						
							| 62 | 56 61 | remulcld | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  ∈  ℝ ) | 
						
							| 63 |  | modmulmodr | ⊢ ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ∈  ℤ  ∧  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) )  mod  𝑃 ) ) | 
						
							| 64 | 23 62 46 63 | syl3anc | ⊢ ( 𝜑  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) )  mod  𝑃 ) ) | 
						
							| 65 | 9 | prodeq2d | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑘  ·  2 ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑘  ·  2 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) ) | 
						
							| 67 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝐻 )  ∈  Fin ) | 
						
							| 68 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  𝑘  ∈  ℤ ) | 
						
							| 69 | 68 | zcnd | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  𝑘  ∈  ℂ ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 71 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 72 | 71 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  2  ∈  ℂ ) | 
						
							| 73 | 67 70 72 | fprodmul | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑘  ·  2 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 𝑘  ·  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 2 ) ) | 
						
							| 74 | 1 4 | gausslemma2dlem0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 75 | 74 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 76 | 75 | ltp1d | ⊢ ( 𝜑  →  𝑀  <  ( 𝑀  +  1 ) ) | 
						
							| 77 |  | fzdisj | ⊢ ( 𝑀  <  ( 𝑀  +  1 )  →  ( ( 1 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  ∅ ) | 
						
							| 78 | 76 77 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  ∅ ) | 
						
							| 79 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 80 |  | nn0pzuz | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  1  ∈  ℤ )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 81 | 74 79 80 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 82 | 74 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 83 | 1 2 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝐻  ∈  ℕ ) | 
						
							| 84 | 83 | nnzd | ⊢ ( 𝜑  →  𝐻  ∈  ℤ ) | 
						
							| 85 | 1 4 2 | gausslemma2dlem0g | ⊢ ( 𝜑  →  𝑀  ≤  𝐻 ) | 
						
							| 86 |  | eluz2 | ⊢ ( 𝐻  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝐻  ∈  ℤ  ∧  𝑀  ≤  𝐻 ) ) | 
						
							| 87 | 82 84 85 86 | syl3anbrc | ⊢ ( 𝜑  →  𝐻  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 88 |  | fzsplit2 | ⊢ ( ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝐻  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1 ... 𝐻 )  =  ( ( 1 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝐻 ) ) ) | 
						
							| 89 | 81 87 88 | syl2anc | ⊢ ( 𝜑  →  ( 1 ... 𝐻 )  =  ( ( 1 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝐻 ) ) ) | 
						
							| 90 | 15 | a1i | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  2  ∈  ℤ ) | 
						
							| 91 | 68 90 | zmulcld | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 93 | 92 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑘  ·  2 )  ∈  ℂ ) | 
						
							| 94 | 78 89 67 93 | fprodsplit | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑘  ·  2 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑘  ·  2 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) ) | 
						
							| 95 |  | nnnn0 | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℕ0 ) | 
						
							| 96 | 95 | anim1i | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( 𝑃  ∈  ℕ0  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 97 | 43 96 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℕ0  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 98 |  | nn0oddm1d2 | ⊢ ( 𝑃  ∈  ℕ0  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 99 | 98 | biimpa | ⊢ ( ( 𝑃  ∈  ℕ0  ∧  ¬  2  ∥  𝑃 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 100 | 2 99 | eqeltrid | ⊢ ( ( 𝑃  ∈  ℕ0  ∧  ¬  2  ∥  𝑃 )  →  𝐻  ∈  ℕ0 ) | 
						
							| 101 | 1 97 100 | 3syl | ⊢ ( 𝜑  →  𝐻  ∈  ℕ0 ) | 
						
							| 102 |  | fprodfac | ⊢ ( 𝐻  ∈  ℕ0  →  ( ! ‘ 𝐻 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 𝑘 ) | 
						
							| 103 | 101 102 | syl | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 𝑘 ) | 
						
							| 104 | 103 | eqcomd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 𝑘  =  ( ! ‘ 𝐻 ) ) | 
						
							| 105 |  | fzfi | ⊢ ( 1 ... 𝐻 )  ∈  Fin | 
						
							| 106 | 105 71 | pm3.2i | ⊢ ( ( 1 ... 𝐻 )  ∈  Fin  ∧  2  ∈  ℂ ) | 
						
							| 107 |  | fprodconst | ⊢ ( ( ( 1 ... 𝐻 )  ∈  Fin  ∧  2  ∈  ℂ )  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 2  =  ( 2 ↑ ( ♯ ‘ ( 1 ... 𝐻 ) ) ) ) | 
						
							| 108 | 106 107 | mp1i | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 2  =  ( 2 ↑ ( ♯ ‘ ( 1 ... 𝐻 ) ) ) ) | 
						
							| 109 | 104 108 | oveq12d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 𝑘  ·  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 2 )  =  ( ( ! ‘ 𝐻 )  ·  ( 2 ↑ ( ♯ ‘ ( 1 ... 𝐻 ) ) ) ) ) | 
						
							| 110 |  | hashfz1 | ⊢ ( 𝐻  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝐻 ) )  =  𝐻 ) | 
						
							| 111 | 101 110 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝐻 ) )  =  𝐻 ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( 𝜑  →  ( 2 ↑ ( ♯ ‘ ( 1 ... 𝐻 ) ) )  =  ( 2 ↑ 𝐻 ) ) | 
						
							| 113 | 112 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  ·  ( 2 ↑ ( ♯ ‘ ( 1 ... 𝐻 ) ) ) )  =  ( ( ! ‘ 𝐻 )  ·  ( 2 ↑ 𝐻 ) ) ) | 
						
							| 114 | 101 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  ∈  ℕ ) | 
						
							| 115 | 114 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  ∈  ℂ ) | 
						
							| 116 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 117 |  | nn0expcl | ⊢ ( ( 2  ∈  ℕ0  ∧  𝐻  ∈  ℕ0 )  →  ( 2 ↑ 𝐻 )  ∈  ℕ0 ) | 
						
							| 118 | 117 | nn0cnd | ⊢ ( ( 2  ∈  ℕ0  ∧  𝐻  ∈  ℕ0 )  →  ( 2 ↑ 𝐻 )  ∈  ℂ ) | 
						
							| 119 | 116 101 118 | sylancr | ⊢ ( 𝜑  →  ( 2 ↑ 𝐻 )  ∈  ℂ ) | 
						
							| 120 | 115 119 | mulcomd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  ·  ( 2 ↑ 𝐻 ) )  =  ( ( 2 ↑ 𝐻 )  ·  ( ! ‘ 𝐻 ) ) ) | 
						
							| 121 | 109 113 120 | 3eqtrd | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 𝑘  ·  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) 2 )  =  ( ( 2 ↑ 𝐻 )  ·  ( ! ‘ 𝐻 ) ) ) | 
						
							| 122 | 73 94 121 | 3eqtr3d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑘  ·  2 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  =  ( ( 2 ↑ 𝐻 )  ·  ( ! ‘ 𝐻 ) ) ) | 
						
							| 123 | 66 122 | eqtrd | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  =  ( ( 2 ↑ 𝐻 )  ·  ( ! ‘ 𝐻 ) ) ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ·  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( ( 2 ↑ 𝐻 )  ·  ( ! ‘ 𝐻 ) ) ) ) | 
						
							| 125 | 23 | zcnd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 126 | 56 | recnd | ⊢ ( 𝜑  →  ( - 1 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 127 | 60 | zcnd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 )  ∈  ℂ ) | 
						
							| 128 | 125 126 127 | mul12d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) ) ) | 
						
							| 129 | 126 119 115 | mulassd | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( ( 2 ↑ 𝐻 )  ·  ( ! ‘ 𝐻 ) ) ) ) | 
						
							| 130 | 124 128 129 | 3eqtr4d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) ) ) | 
						
							| 131 | 130 | oveq1d | ⊢ ( 𝜑  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 ) ) | 
						
							| 132 | 52 64 131 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 ) ) | 
						
							| 133 | 7 49 132 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 ) ) |