Description: A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nn0red.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℕ_{0} ) | |
Assertion | nn0red | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℕ_{0} ) | |
2 | nn0ssre | ⊢ ℕ_{0} ⊆ ℝ | |
3 | 2 1 | sseldi | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |