| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gausslemma2d.p |
|
| 2 |
|
gausslemma2d.h |
|
| 3 |
|
gausslemma2d.r |
|
| 4 |
|
gausslemma2d.m |
|
| 5 |
|
gausslemma2d.n |
|
| 6 |
1 2 3 4
|
gausslemma2dlem4 |
|
| 7 |
6
|
oveq1d |
|
| 8 |
|
fzfid |
|
| 9 |
1 2 3 4
|
gausslemma2dlem2 |
|
| 10 |
9
|
adantr |
|
| 11 |
|
rspa |
|
| 12 |
11
|
expcom |
|
| 13 |
12
|
adantl |
|
| 14 |
|
elfzelz |
|
| 15 |
|
2z |
|
| 16 |
15
|
a1i |
|
| 17 |
14 16
|
zmulcld |
|
| 18 |
17
|
adantl |
|
| 19 |
|
eleq1 |
|
| 20 |
18 19
|
syl5ibrcom |
|
| 21 |
13 20
|
syld |
|
| 22 |
10 21
|
mpd |
|
| 23 |
8 22
|
fprodzcl |
|
| 24 |
|
fzfid |
|
| 25 |
1 2 3 4
|
gausslemma2dlem3 |
|
| 26 |
25
|
adantr |
|
| 27 |
|
rspa |
|
| 28 |
27
|
expcom |
|
| 29 |
28
|
adantl |
|
| 30 |
1
|
gausslemma2dlem0a |
|
| 31 |
30
|
nnzd |
|
| 32 |
|
elfzelz |
|
| 33 |
15
|
a1i |
|
| 34 |
32 33
|
zmulcld |
|
| 35 |
|
zsubcl |
|
| 36 |
31 34 35
|
syl2an |
|
| 37 |
|
eleq1 |
|
| 38 |
36 37
|
syl5ibrcom |
|
| 39 |
29 38
|
syld |
|
| 40 |
26 39
|
mpd |
|
| 41 |
24 40
|
fprodzcl |
|
| 42 |
41
|
zred |
|
| 43 |
|
nnoddn2prm |
|
| 44 |
|
nnrp |
|
| 45 |
44
|
adantr |
|
| 46 |
1 43 45
|
3syl |
|
| 47 |
|
modmulmodr |
|
| 48 |
47
|
eqcomd |
|
| 49 |
23 42 46 48
|
syl3anc |
|
| 50 |
1 2 3 4 5
|
gausslemma2dlem5 |
|
| 51 |
50
|
oveq2d |
|
| 52 |
51
|
oveq1d |
|
| 53 |
|
neg1rr |
|
| 54 |
53
|
a1i |
|
| 55 |
1 4 2 5
|
gausslemma2dlem0h |
|
| 56 |
54 55
|
reexpcld |
|
| 57 |
32
|
adantl |
|
| 58 |
15
|
a1i |
|
| 59 |
57 58
|
zmulcld |
|
| 60 |
24 59
|
fprodzcl |
|
| 61 |
60
|
zred |
|
| 62 |
56 61
|
remulcld |
|
| 63 |
|
modmulmodr |
|
| 64 |
23 62 46 63
|
syl3anc |
|
| 65 |
9
|
prodeq2d |
|
| 66 |
65
|
oveq1d |
|
| 67 |
|
fzfid |
|
| 68 |
|
elfzelz |
|
| 69 |
68
|
zcnd |
|
| 70 |
69
|
adantl |
|
| 71 |
|
2cn |
|
| 72 |
71
|
a1i |
|
| 73 |
67 70 72
|
fprodmul |
|
| 74 |
1 4
|
gausslemma2dlem0d |
|
| 75 |
74
|
nn0red |
|
| 76 |
75
|
ltp1d |
|
| 77 |
|
fzdisj |
|
| 78 |
76 77
|
syl |
|
| 79 |
|
1zzd |
|
| 80 |
|
nn0pzuz |
|
| 81 |
74 79 80
|
syl2anc |
|
| 82 |
74
|
nn0zd |
|
| 83 |
1 2
|
gausslemma2dlem0b |
|
| 84 |
83
|
nnzd |
|
| 85 |
1 4 2
|
gausslemma2dlem0g |
|
| 86 |
|
eluz2 |
|
| 87 |
82 84 85 86
|
syl3anbrc |
|
| 88 |
|
fzsplit2 |
|
| 89 |
81 87 88
|
syl2anc |
|
| 90 |
15
|
a1i |
|
| 91 |
68 90
|
zmulcld |
|
| 92 |
91
|
adantl |
|
| 93 |
92
|
zcnd |
|
| 94 |
78 89 67 93
|
fprodsplit |
|
| 95 |
|
nnnn0 |
|
| 96 |
95
|
anim1i |
|
| 97 |
43 96
|
syl |
|
| 98 |
|
nn0oddm1d2 |
|
| 99 |
98
|
biimpa |
|
| 100 |
2 99
|
eqeltrid |
|
| 101 |
1 97 100
|
3syl |
|
| 102 |
|
fprodfac |
|
| 103 |
101 102
|
syl |
|
| 104 |
103
|
eqcomd |
|
| 105 |
|
fzfi |
|
| 106 |
105 71
|
pm3.2i |
|
| 107 |
|
fprodconst |
|
| 108 |
106 107
|
mp1i |
|
| 109 |
104 108
|
oveq12d |
|
| 110 |
|
hashfz1 |
|
| 111 |
101 110
|
syl |
|
| 112 |
111
|
oveq2d |
|
| 113 |
112
|
oveq2d |
|
| 114 |
101
|
faccld |
|
| 115 |
114
|
nncnd |
|
| 116 |
|
2nn0 |
|
| 117 |
|
nn0expcl |
|
| 118 |
117
|
nn0cnd |
|
| 119 |
116 101 118
|
sylancr |
|
| 120 |
115 119
|
mulcomd |
|
| 121 |
109 113 120
|
3eqtrd |
|
| 122 |
73 94 121
|
3eqtr3d |
|
| 123 |
66 122
|
eqtrd |
|
| 124 |
123
|
oveq2d |
|
| 125 |
23
|
zcnd |
|
| 126 |
56
|
recnd |
|
| 127 |
60
|
zcnd |
|
| 128 |
125 126 127
|
mul12d |
|
| 129 |
126 119 115
|
mulassd |
|
| 130 |
124 128 129
|
3eqtr4d |
|
| 131 |
130
|
oveq1d |
|
| 132 |
52 64 131
|
3eqtrd |
|
| 133 |
7 49 132
|
3eqtrd |
|