Metamath Proof Explorer


Theorem gausslemma2dlem2

Description: Lemma 2 for gausslemma2d . (Contributed by AV, 4-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φ P 2
gausslemma2d.h H = P 1 2
gausslemma2d.r R = x 1 H if x 2 < P 2 x 2 P x 2
gausslemma2d.m M = P 4
Assertion gausslemma2dlem2 φ k 1 M R k = k 2

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φ P 2
2 gausslemma2d.h H = P 1 2
3 gausslemma2d.r R = x 1 H if x 2 < P 2 x 2 P x 2
4 gausslemma2d.m M = P 4
5 oveq1 x = k x 2 = k 2
6 5 breq1d x = k x 2 < P 2 k 2 < P 2
7 5 oveq2d x = k P x 2 = P k 2
8 6 5 7 ifbieq12d x = k if x 2 < P 2 x 2 P x 2 = if k 2 < P 2 k 2 P k 2
9 8 adantl φ k 1 M x = k if x 2 < P 2 x 2 P x 2 = if k 2 < P 2 k 2 P k 2
10 elfz1b k 1 M k M k M
11 nnre k k
12 11 adantr k M k
13 nnre M M
14 13 adantl k M M
15 2re 2
16 2pos 0 < 2
17 15 16 pm3.2i 2 0 < 2
18 17 a1i k M 2 0 < 2
19 lemul1 k M 2 0 < 2 k M k 2 M 2
20 12 14 18 19 syl3anc k M k M k 2 M 2
21 1 4 gausslemma2dlem0e φ M 2 < P 2
22 21 adantl k M φ M 2 < P 2
23 15 a1i k 2
24 11 23 remulcld k k 2
25 24 adantr k M k 2
26 15 a1i M 2
27 13 26 remulcld M M 2
28 27 adantl k M M 2
29 1 gausslemma2dlem0a φ P
30 29 nnred φ P
31 30 rehalfcld φ P 2
32 lelttr k 2 M 2 P 2 k 2 M 2 M 2 < P 2 k 2 < P 2
33 25 28 31 32 syl2an3an k M φ k 2 M 2 M 2 < P 2 k 2 < P 2
34 22 33 mpan2d k M φ k 2 M 2 k 2 < P 2
35 34 ex k M φ k 2 M 2 k 2 < P 2
36 35 com23 k M k 2 M 2 φ k 2 < P 2
37 20 36 sylbid k M k M φ k 2 < P 2
38 37 3impia k M k M φ k 2 < P 2
39 10 38 sylbi k 1 M φ k 2 < P 2
40 39 impcom φ k 1 M k 2 < P 2
41 40 adantr φ k 1 M x = k k 2 < P 2
42 41 iftrued φ k 1 M x = k if k 2 < P 2 k 2 P k 2 = k 2
43 9 42 eqtrd φ k 1 M x = k if x 2 < P 2 x 2 P x 2 = k 2
44 1 4 gausslemma2dlem0d φ M 0
45 44 nn0zd φ M
46 1 2 gausslemma2dlem0b φ H
47 46 nnzd φ H
48 1 4 2 gausslemma2dlem0g φ M H
49 eluz2 H M M H M H
50 45 47 48 49 syl3anbrc φ H M
51 fzss2 H M 1 M 1 H
52 50 51 syl φ 1 M 1 H
53 52 sselda φ k 1 M k 1 H
54 ovexd φ k 1 M k 2 V
55 3 43 53 54 fvmptd2 φ k 1 M R k = k 2
56 55 ralrimiva φ k 1 M R k = k 2