Metamath Proof Explorer


Theorem lemul1

Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005)

Ref Expression
Assertion lemul1 A B C 0 < C A B A C B C

Proof

Step Hyp Ref Expression
1 ltmul1 A B C 0 < C A < B A C < B C
2 recn A A
3 recn B B
4 recn C C
5 4 adantr C 0 < C C
6 gt0ne0 C 0 < C C 0
7 5 6 jca C 0 < C C C 0
8 mulcan2 A B C C 0 A C = B C A = B
9 2 3 7 8 syl3an A B C 0 < C A C = B C A = B
10 9 bicomd A B C 0 < C A = B A C = B C
11 1 10 orbi12d A B C 0 < C A < B A = B A C < B C A C = B C
12 leloe A B A B A < B A = B
13 12 3adant3 A B C 0 < C A B A < B A = B
14 remulcl A C A C
15 14 3adant2 A B C A C
16 remulcl B C B C
17 16 3adant1 A B C B C
18 15 17 leloed A B C A C B C A C < B C A C = B C
19 18 3adant3r A B C 0 < C A C B C A C < B C A C = B C
20 11 13 19 3bitr4d A B C 0 < C A B A C B C