Metamath Proof Explorer


Theorem lemul1

Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005)

Ref Expression
Assertion lemul1 ABC0<CABACBC

Proof

Step Hyp Ref Expression
1 ltmul1 ABC0<CA<BAC<BC
2 recn AA
3 recn BB
4 recn CC
5 4 adantr C0<CC
6 gt0ne0 C0<CC0
7 5 6 jca C0<CCC0
8 mulcan2 ABCC0AC=BCA=B
9 2 3 7 8 syl3an ABC0<CAC=BCA=B
10 9 bicomd ABC0<CA=BAC=BC
11 1 10 orbi12d ABC0<CA<BA=BAC<BCAC=BC
12 leloe ABABA<BA=B
13 12 3adant3 ABC0<CABA<BA=B
14 remulcl ACAC
15 14 3adant2 ABCAC
16 remulcl BCBC
17 16 3adant1 ABCBC
18 15 17 leloed ABCACBCAC<BCAC=BC
19 18 3adant3r ABC0<CACBCAC<BCAC=BC
20 11 13 19 3bitr4d ABC0<CABACBC