Metamath Proof Explorer


Theorem elfz1b

Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018) (Proof shortened by AV, 23-Jan-2022)

Ref Expression
Assertion elfz1b N1MNMNM

Proof

Step Hyp Ref Expression
1 elfz2 N1M1MN1NNM
2 simpl2 1MN1NNMM
3 1red 1MN1
4 zre NN
5 4 3ad2ant3 1MNN
6 zre MM
7 6 3ad2ant2 1MNM
8 letr 1NM1NNM1M
9 3 5 7 8 syl3anc 1MN1NNM1M
10 9 imp 1MN1NNM1M
11 elnnz1 MM1M
12 2 10 11 sylanbrc 1MN1NNMM
13 1 12 sylbi N1MM
14 elfzel2 N1MM
15 fznn MN1MNNM
16 15 biimpd MN1MNNM
17 14 16 mpcom N1MNNM
18 3anan12 NMNMMNNM
19 13 17 18 sylanbrc N1MNMNM
20 nnz MM
21 20 15 syl MN1MNNM
22 21 biimprd MNNMN1M
23 22 expd MNNMN1M
24 23 3imp21 NMNMN1M
25 19 24 impbii N1MNMNM