Metamath Proof Explorer


Theorem elnnz1

Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion elnnz1 NN1N

Proof

Step Hyp Ref Expression
1 nnz NN
2 nnge1 N1N
3 1 2 jca NN1N
4 0lt1 0<1
5 0re 0
6 1re 1
7 zre NN
8 ltletr 01N0<11N0<N
9 5 6 7 8 mp3an12i N0<11N0<N
10 4 9 mpani N1N0<N
11 10 imdistani N1NN0<N
12 elnnz NN0<N
13 11 12 sylibr N1NN
14 3 13 impbii NN1N