Metamath Proof Explorer


Theorem znnnlt1

Description: An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005)

Ref Expression
Assertion znnnlt1 N¬NN<1

Proof

Step Hyp Ref Expression
1 elnnz1 NN1N
2 1 baib NN1N
3 2 notbid N¬N¬1N
4 zre NN
5 1re 1
6 ltnle N1N<1¬1N
7 4 5 6 sylancl NN<1¬1N
8 3 7 bitr4d N¬NN<1