Metamath Proof Explorer


Theorem elfz2

Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show M e. ZZ and N e. ZZ . (Contributed by NM, 6-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfz2 KMNMNKMKKN

Proof

Step Hyp Ref Expression
1 anass MNKMKKNMNKMKKN
2 df-3an MNKMNK
3 2 anbi1i MNKMKKNMNKMKKN
4 elfz1 MNKMNKMKKN
5 3anass KMKKNKMKKN
6 ibar MNKMKKNMNKMKKN
7 5 6 bitrid MNKMKKNMNKMKKN
8 4 7 bitrd MNKMNMNKMKKN
9 fzf :×𝒫
10 9 fdmi dom=×
11 10 ndmov ¬MNMN=
12 11 eleq2d ¬MNKMNK
13 noel ¬K
14 13 pm2.21i KMN
15 simpl MNKMKKNMN
16 14 15 pm5.21ni ¬MNKMNKMKKN
17 12 16 bitrd ¬MNKMNMNKMKKN
18 8 17 pm2.61i KMNMNKMKKN
19 1 3 18 3bitr4ri KMNMNKMKKN