Metamath Proof Explorer


Theorem gausslemma2dlem4

Description: Lemma 4 for gausslemma2d . (Contributed by AV, 16-Jun-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
gausslemma2d.m M=P4
Assertion gausslemma2dlem4 φH!=k=1MRkk=M+1HRk

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 gausslemma2d.m M=P4
5 1 2 3 gausslemma2dlem1 φH!=k=1HRk
6 eldif P2P¬P2
7 prm23ge5 PP=2P=3P5
8 eleq1 P=2P222
9 8 notbid P=2¬P2¬22
10 2ex 2V
11 10 snid 22
12 11 2a1i P=2k=1HRkk=1MRkk=M+1HRk22
13 12 necon1bd P=2¬22k=1HRk=k=1MRkk=M+1HRk
14 13 a1dd P=2¬22φk=1HRk=k=1MRkk=M+1HRk
15 9 14 sylbid P=2¬P2φk=1HRk=k=1MRkk=M+1HRk
16 3lt4 3<4
17 breq1 P=3P<43<4
18 16 17 mpbiri P=3P<4
19 3nn0 30
20 eleq1 P=3P030
21 19 20 mpbiri P=3P0
22 4nn 4
23 divfl0 P04P<4P4=0
24 21 22 23 sylancl P=3P<4P4=0
25 18 24 mpbid P=3P4=0
26 4 25 eqtrid P=3M=0
27 oveq2 M=01M=10
28 27 adantr M=0φ1M=10
29 fz10 10=
30 28 29 eqtrdi M=0φ1M=
31 30 prodeq1d M=0φk=1MRk=kRk
32 prod0 kRk=1
33 31 32 eqtrdi M=0φk=1MRk=1
34 oveq1 M=0M+1=0+1
35 34 adantr M=0φM+1=0+1
36 0p1e1 0+1=1
37 35 36 eqtrdi M=0φM+1=1
38 37 oveq1d M=0φM+1H=1H
39 38 prodeq1d M=0φk=M+1HRk=k=1HRk
40 33 39 oveq12d M=0φk=1MRkk=M+1HRk=1k=1HRk
41 fzfid M=0φ1HFin
42 oveq1 x=kx2=k2
43 42 breq1d x=kx2<P2k2<P2
44 42 oveq2d x=kPx2=Pk2
45 43 42 44 ifbieq12d x=kifx2<P2x2Px2=ifk2<P2k2Pk2
46 simpr φk1Hk1H
47 elfzelz k1Hk
48 47 zcnd k1Hk
49 2cnd k1H2
50 48 49 mulcld k1Hk2
51 50 adantl φk1Hk2
52 eldifi P2P
53 prmz PP
54 53 zcnd PP
55 1 52 54 3syl φP
56 55 adantr φk1HP
57 56 51 subcld φk1HPk2
58 51 57 ifcld φk1Hifk2<P2k2Pk2
59 3 45 46 58 fvmptd3 φk1HRk=ifk2<P2k2Pk2
60 59 58 eqeltrd φk1HRk
61 60 adantll M=0φk1HRk
62 41 61 fprodcl M=0φk=1HRk
63 62 mullidd M=0φ1k=1HRk=k=1HRk
64 40 63 eqtr2d M=0φk=1HRk=k=1MRkk=M+1HRk
65 64 ex M=0φk=1HRk=k=1MRkk=M+1HRk
66 26 65 syl P=3φk=1HRk=k=1MRkk=M+1HRk
67 66 a1d P=3¬P2φk=1HRk=k=1MRkk=M+1HRk
68 1 4 gausslemma2dlem0d φM0
69 68 nn0red φM
70 69 ltp1d φM<M+1
71 fzdisj M<M+11MM+1H=
72 70 71 syl φ1MM+1H=
73 72 adantl P5φ1MM+1H=
74 eluzelre P5P
75 4re 4
76 75 a1i P54
77 4ne0 40
78 77 a1i P540
79 74 76 78 redivcld P5P4
80 79 flcld P5P4
81 nnrp 44+
82 22 81 ax-mp 4+
83 eluz2 P55P5P
84 4lt5 4<5
85 5re 5
86 85 a1i 5P5
87 zre PP
88 87 adantl 5PP
89 ltleletr 45P4<55P4P
90 75 86 88 89 mp3an2i 5P4<55P4P
91 84 90 mpani 5P5P4P
92 91 3impia 5P5P4P
93 83 92 sylbi P54P
94 divge1 4+P4P1P4
95 82 74 93 94 mp3an2i P51P4
96 1zzd P51
97 flge P411P41P4
98 79 96 97 syl2anc P51P41P4
99 95 98 mpbid P51P4
100 elnnz1 P4P41P4
101 80 99 100 sylanbrc P5P4
102 101 adantl P2P5P4
103 oddprm P2P12
104 103 adantr P2P5P12
105 prmuz2 PP2
106 52 105 syl P2P2
107 106 adantr P2P5P2
108 fldiv4lem1div2uz2 P2P4P12
109 107 108 syl P2P5P4P12
110 102 104 109 3jca P2P5P4P12P4P12
111 110 ex P2P5P4P12P4P12
112 1 111 syl φP5P4P12P4P12
113 112 impcom P5φP4P12P4P12
114 2 oveq2i 1H=1P12
115 4 114 eleq12i M1HP41P12
116 elfz1b P41P12P4P12P4P12
117 115 116 bitri M1HP4P12P4P12
118 113 117 sylibr P5φM1H
119 fzsplit M1H1H=1MM+1H
120 118 119 syl P5φ1H=1MM+1H
121 fzfid P5φ1HFin
122 60 adantll P5φk1HRk
123 73 120 121 122 fprodsplit P5φk=1HRk=k=1MRkk=M+1HRk
124 123 ex P5φk=1HRk=k=1MRkk=M+1HRk
125 124 a1d P5¬P2φk=1HRk=k=1MRkk=M+1HRk
126 15 67 125 3jaoi P=2P=3P5¬P2φk=1HRk=k=1MRkk=M+1HRk
127 7 126 syl P¬P2φk=1HRk=k=1MRkk=M+1HRk
128 127 imp P¬P2φk=1HRk=k=1MRkk=M+1HRk
129 6 128 sylbi P2φk=1HRk=k=1MRkk=M+1HRk
130 1 129 mpcom φk=1HRk=k=1MRkk=M+1HRk
131 5 130 eqtrd φH!=k=1MRkk=M+1HRk