Metamath Proof Explorer


Theorem flge

Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004) (Proof shortened by Fan Zheng, 14-Jul-2016)

Ref Expression
Assertion flge ABBABA

Proof

Step Hyp Ref Expression
1 flltp1 AA<A+1
2 1 adantr ABA<A+1
3 simpr ABB
4 3 zred ABB
5 simpl ABA
6 5 flcld ABA
7 6 peano2zd ABA+1
8 7 zred ABA+1
9 lelttr BAA+1BAA<A+1B<A+1
10 4 5 8 9 syl3anc ABBAA<A+1B<A+1
11 2 10 mpan2d ABBAB<A+1
12 zleltp1 BABAB<A+1
13 3 6 12 syl2anc ABBAB<A+1
14 11 13 sylibrd ABBABA
15 flle AAA
16 15 adantr ABAA
17 6 zred ABA
18 letr BAABAAABA
19 4 17 5 18 syl3anc ABBAAABA
20 16 19 mpan2d ABBABA
21 14 20 impbid ABBABA