Metamath Proof Explorer


Theorem fllt

Description: The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion fllt ABA<BA<B

Proof

Step Hyp Ref Expression
1 flge ABBABA
2 zre BB
3 lenlt BABA¬A<B
4 2 3 sylan BABA¬A<B
5 4 ancoms ABBA¬A<B
6 reflcl AA
7 lenlt BABA¬A<B
8 2 6 7 syl2anr ABBA¬A<B
9 1 5 8 3bitr3d AB¬A<B¬A<B
10 9 con4bid ABA<BA<B