Metamath Proof Explorer


Theorem flflp1

Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)

Ref Expression
Assertion flflp1 A B A B A < B + 1

Proof

Step Hyp Ref Expression
1 flltp1 A A < A + 1
2 1 ad3antrrr A B A B B < A A < A + 1
3 flval B B = ι x | x B B < x + 1
4 3 ad3antlr A B A B B < A B = ι x | x B B < x + 1
5 simplr A B A B B < A A B
6 1 adantr A B A < A + 1
7 reflcl A A
8 peano2re A A + 1
9 7 8 syl A A + 1
10 9 adantl B A A + 1
11 lttr B A A + 1 B < A A < A + 1 B < A + 1
12 10 11 mpd3an3 B A B < A A < A + 1 B < A + 1
13 12 ancoms A B B < A A < A + 1 B < A + 1
14 6 13 mpan2d A B B < A B < A + 1
15 14 imp A B B < A B < A + 1
16 15 adantlr A B A B B < A B < A + 1
17 flcl A A
18 rebtwnz B ∃! x x B B < x + 1
19 breq1 x = A x B A B
20 oveq1 x = A x + 1 = A + 1
21 20 breq2d x = A B < x + 1 B < A + 1
22 19 21 anbi12d x = A x B B < x + 1 A B B < A + 1
23 22 riota2 A ∃! x x B B < x + 1 A B B < A + 1 ι x | x B B < x + 1 = A
24 17 18 23 syl2an A B A B B < A + 1 ι x | x B B < x + 1 = A
25 24 ad2antrr A B A B B < A A B B < A + 1 ι x | x B B < x + 1 = A
26 5 16 25 mpbi2and A B A B B < A ι x | x B B < x + 1 = A
27 4 26 eqtrd A B A B B < A B = A
28 27 oveq1d A B A B B < A B + 1 = A + 1
29 2 28 breqtrrd A B A B B < A A < B + 1
30 29 ex A B A B B < A A < B + 1
31 lenlt A B A B ¬ B < A
32 flltp1 B B < B + 1
33 32 adantl A B B < B + 1
34 reflcl B B
35 peano2re B B + 1
36 34 35 syl B B + 1
37 36 adantl A B B + 1
38 lelttr A B B + 1 A B B < B + 1 A < B + 1
39 37 38 mpd3an3 A B A B B < B + 1 A < B + 1
40 33 39 mpan2d A B A B A < B + 1
41 31 40 sylbird A B ¬ B < A A < B + 1
42 41 adantr A B A B ¬ B < A A < B + 1
43 30 42 pm2.61d A B A B A < B + 1
44 flval A A = ι x | x A A < x + 1
45 44 ad3antrrr A B A < B + 1 B < A A = ι x | x A A < x + 1
46 34 ad2antlr A B B < A B
47 simpll A B B < A A
48 simplr A B B < A B
49 flle B B B
50 49 ad2antlr A B B < A B B
51 simpr A B B < A B < A
52 46 48 47 50 51 lelttrd A B B < A B < A
53 46 47 52 ltled A B B < A B A
54 53 adantlr A B A < B + 1 B < A B A
55 simplr A B A < B + 1 B < A A < B + 1
56 flcl B B
57 rebtwnz A ∃! x x A A < x + 1
58 breq1 x = B x A B A
59 oveq1 x = B x + 1 = B + 1
60 59 breq2d x = B A < x + 1 A < B + 1
61 58 60 anbi12d x = B x A A < x + 1 B A A < B + 1
62 61 riota2 B ∃! x x A A < x + 1 B A A < B + 1 ι x | x A A < x + 1 = B
63 56 57 62 syl2anr A B B A A < B + 1 ι x | x A A < x + 1 = B
64 63 ad2antrr A B A < B + 1 B < A B A A < B + 1 ι x | x A A < x + 1 = B
65 54 55 64 mpbi2and A B A < B + 1 B < A ι x | x A A < x + 1 = B
66 45 65 eqtrd A B A < B + 1 B < A A = B
67 49 ad3antlr A B A < B + 1 B < A B B
68 66 67 eqbrtrd A B A < B + 1 B < A A B
69 68 ex A B A < B + 1 B < A A B
70 flle A A A
71 70 adantr A B A A
72 7 adantr A B A
73 letr A A B A A A B A B
74 73 3coml A B A A A A B A B
75 72 74 mpd3an3 A B A A A B A B
76 71 75 mpand A B A B A B
77 31 76 sylbird A B ¬ B < A A B
78 77 adantr A B A < B + 1 ¬ B < A A B
79 69 78 pm2.61d A B A < B + 1 A B
80 43 79 impbida A B A B A < B + 1