| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flltp1 |
|
| 2 |
1
|
ad3antrrr |
|
| 3 |
|
flval |
|
| 4 |
3
|
ad3antlr |
|
| 5 |
|
simplr |
|
| 6 |
1
|
adantr |
|
| 7 |
|
reflcl |
|
| 8 |
|
peano2re |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
adantl |
|
| 11 |
|
lttr |
|
| 12 |
10 11
|
mpd3an3 |
|
| 13 |
12
|
ancoms |
|
| 14 |
6 13
|
mpan2d |
|
| 15 |
14
|
imp |
|
| 16 |
15
|
adantlr |
|
| 17 |
|
flcl |
|
| 18 |
|
rebtwnz |
|
| 19 |
|
breq1 |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
breq2d |
|
| 22 |
19 21
|
anbi12d |
|
| 23 |
22
|
riota2 |
|
| 24 |
17 18 23
|
syl2an |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
5 16 25
|
mpbi2and |
|
| 27 |
4 26
|
eqtrd |
|
| 28 |
27
|
oveq1d |
|
| 29 |
2 28
|
breqtrrd |
|
| 30 |
29
|
ex |
|
| 31 |
|
lenlt |
|
| 32 |
|
flltp1 |
|
| 33 |
32
|
adantl |
|
| 34 |
|
reflcl |
|
| 35 |
|
peano2re |
|
| 36 |
34 35
|
syl |
|
| 37 |
36
|
adantl |
|
| 38 |
|
lelttr |
|
| 39 |
37 38
|
mpd3an3 |
|
| 40 |
33 39
|
mpan2d |
|
| 41 |
31 40
|
sylbird |
|
| 42 |
41
|
adantr |
|
| 43 |
30 42
|
pm2.61d |
|
| 44 |
|
flval |
|
| 45 |
44
|
ad3antrrr |
|
| 46 |
34
|
ad2antlr |
|
| 47 |
|
simpll |
|
| 48 |
|
simplr |
|
| 49 |
|
flle |
|
| 50 |
49
|
ad2antlr |
|
| 51 |
|
simpr |
|
| 52 |
46 48 47 50 51
|
lelttrd |
|
| 53 |
46 47 52
|
ltled |
|
| 54 |
53
|
adantlr |
|
| 55 |
|
simplr |
|
| 56 |
|
flcl |
|
| 57 |
|
rebtwnz |
|
| 58 |
|
breq1 |
|
| 59 |
|
oveq1 |
|
| 60 |
59
|
breq2d |
|
| 61 |
58 60
|
anbi12d |
|
| 62 |
61
|
riota2 |
|
| 63 |
56 57 62
|
syl2anr |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
54 55 64
|
mpbi2and |
|
| 66 |
45 65
|
eqtrd |
|
| 67 |
49
|
ad3antlr |
|
| 68 |
66 67
|
eqbrtrd |
|
| 69 |
68
|
ex |
|
| 70 |
|
flle |
|
| 71 |
70
|
adantr |
|
| 72 |
7
|
adantr |
|
| 73 |
|
letr |
|
| 74 |
73
|
3coml |
|
| 75 |
72 74
|
mpd3an3 |
|
| 76 |
71 75
|
mpand |
|
| 77 |
31 76
|
sylbird |
|
| 78 |
77
|
adantr |
|
| 79 |
69 78
|
pm2.61d |
|
| 80 |
43 79
|
impbida |
|