| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 2 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 3 |
|
flval |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) ) |
| 4 |
3
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) ) |
| 5 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 7 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 11 |
|
lttr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( ( 𝐵 < 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 12 |
10 11
|
mpd3an3 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 < 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 13 |
12
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 < 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 14 |
6 13
|
mpan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 15 |
14
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 16 |
15
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 17 |
|
flcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 18 |
|
rebtwnz |
⊢ ( 𝐵 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) |
| 19 |
|
breq1 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 ≤ 𝐵 ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 + 1 ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 21 |
20
|
breq2d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝐵 < ( 𝑥 + 1 ) ↔ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 22 |
19 21
|
anbi12d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 23 |
22
|
riota2 |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 24 |
17 18 23
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 26 |
5 16 25
|
mpbi2and |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐵 ∧ 𝐵 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
| 27 |
4 26
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) = ( ⌊ ‘ 𝐴 ) ) |
| 28 |
27
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ( ⌊ ‘ 𝐵 ) + 1 ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 29 |
2 28
|
breqtrrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 30 |
29
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) → ( 𝐵 < 𝐴 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 31 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 32 |
|
flltp1 |
⊢ ( 𝐵 ∈ ℝ → 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 34 |
|
reflcl |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) ∈ ℝ ) |
| 35 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ℝ → ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) |
| 36 |
34 35
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) |
| 38 |
|
lelttr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐵 ) + 1 ) ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 39 |
37 38
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 40 |
33 39
|
mpan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 41 |
31 40
|
sylbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) → ( ¬ 𝐵 < 𝐴 → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 43 |
30 42
|
pm2.61d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 44 |
|
flval |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 45 |
44
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 46 |
34
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ∈ ℝ ) |
| 47 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 48 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 ∈ ℝ ) |
| 49 |
|
flle |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) ≤ 𝐵 ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐵 ) |
| 51 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 < 𝐴 ) |
| 52 |
46 48 47 50 51
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) < 𝐴 ) |
| 53 |
46 47 52
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ) |
| 54 |
53
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ) |
| 55 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 56 |
|
flcl |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) ∈ ℤ ) |
| 57 |
|
rebtwnz |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) |
| 58 |
|
breq1 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( 𝑥 ≤ 𝐴 ↔ ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ) ) |
| 59 |
|
oveq1 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( 𝑥 + 1 ) = ( ( ⌊ ‘ 𝐵 ) + 1 ) ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( 𝐴 < ( 𝑥 + 1 ) ↔ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |
| 61 |
58 60
|
anbi12d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐵 ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) ) |
| 62 |
61
|
riota2 |
⊢ ( ( ( ⌊ ‘ 𝐵 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) → ( ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) ) |
| 63 |
56 57 62
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ( ( ⌊ ‘ 𝐵 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) ) |
| 65 |
54 55 64
|
mpbi2and |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐵 ) ) |
| 66 |
45 65
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) = ( ⌊ ‘ 𝐵 ) ) |
| 67 |
49
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐵 ) ≤ 𝐵 ) |
| 68 |
66 67
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ∧ 𝐵 < 𝐴 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) |
| 69 |
68
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → ( 𝐵 < 𝐴 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 70 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 72 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 73 |
|
letr |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 74 |
73
|
3coml |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 75 |
72 74
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 76 |
71 75
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 77 |
31 76
|
sylbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → ( ¬ 𝐵 < 𝐴 → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 79 |
69 78
|
pm2.61d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) |
| 80 |
43 79
|
impbida |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ↔ 𝐴 < ( ( ⌊ ‘ 𝐵 ) + 1 ) ) ) |