Metamath Proof Explorer


Theorem reflcl

Description: The floor (greatest integer) function is real. (Contributed by NM, 15-Jul-2008)

Ref Expression
Assertion reflcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 flcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
2 1 zred ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )