Metamath Proof Explorer


Theorem oddprm

Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion oddprm N2N12

Proof

Step Hyp Ref Expression
1 eldifi N2N
2 prmz NN
3 1 2 syl N2N
4 eldifsni N2N2
5 4 necomd N22N
6 5 neneqd N2¬2=N
7 2z 2
8 uzid 222
9 7 8 ax-mp 22
10 dvdsprm 22N2N2=N
11 9 1 10 sylancr N22N2=N
12 6 11 mtbird N2¬2N
13 1z 1
14 n2dvds1 ¬21
15 omoe N¬2N1¬212N1
16 13 14 15 mpanr12 N¬2N2N1
17 3 12 16 syl2anc N22N1
18 prmnn NN
19 nnm1nn0 NN10
20 1 18 19 3syl N2N10
21 nn0z N10N1
22 evend2 N12N1N12
23 20 21 22 3syl N22N1N12
24 17 23 mpbid N2N12
25 prmuz2 NN2
26 uz2m1nn N2N1
27 nngt0 N10<N1
28 nnre N1N1
29 2rp 2+
30 29 a1i N12+
31 28 30 gt0divd N10<N10<N12
32 27 31 mpbid N10<N12
33 1 25 26 32 4syl N20<N12
34 elnnz N12N120<N12
35 24 33 34 sylanbrc N2N12