Metamath Proof Explorer


Theorem nnm1nn0

Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007) (Revised by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nnm1nn0 NN10

Proof

Step Hyp Ref Expression
1 nn1m1nn NN=1N1
2 oveq1 N=1N1=11
3 1m1e0 11=0
4 2 3 eqtrdi N=1N1=0
5 4 orim1i N=1N1N1=0N1
6 1 5 syl NN1=0N1
7 6 orcomd NN1N1=0
8 elnn0 N10N1N1=0
9 7 8 sylibr NN10