Metamath Proof Explorer


Theorem fldiv4lem1div2uz2

Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion fldiv4lem1div2uz2 N2N4N12

Proof

Step Hyp Ref Expression
1 eluzelz N2N
2 zre NN
3 id NN
4 4re 4
5 4 a1i N4
6 4ne0 40
7 6 a1i N40
8 3 5 7 redivcld NN4
9 2 8 syl NN4
10 flle N4N4N4
11 1 9 10 3syl N2N4N4
12 1red N21
13 eluzelre N2N
14 rehalfcl NN2
15 1 2 14 3syl N2N2
16 2rp 2+
17 16 a1i N22+
18 eluzle N22N
19 divge1 2+N2N1N2
20 17 13 18 19 syl3anc N21N2
21 eluzelcn N2N
22 subhalfhalf NNN2=N2
23 21 22 syl N2NN2=N2
24 20 23 breqtrrd N21NN2
25 12 13 15 24 lesubd N2N2N1
26 2t2e4 22=4
27 26 eqcomi 4=22
28 27 a1i N24=22
29 28 oveq2d N2N4=N22
30 2cnne0 220
31 30 a1i N2220
32 divdiv1 N220220N22=N22
33 21 31 31 32 syl3anc N2N22=N22
34 29 33 eqtr4d N2N4=N22
35 34 breq1d N2N4N12N22N12
36 peano2rem NN1
37 13 36 syl N2N1
38 15 37 17 lediv1d N2N2N1N22N12
39 35 38 bitr4d N2N4N12N2N1
40 25 39 mpbird N2N4N12
41 8 flcld NN4
42 41 zred NN4
43 36 rehalfcld NN12
44 42 8 43 3jca NN4N4N12
45 1 2 44 3syl N2N4N4N12
46 letr N4N4N12N4N4N4N12N4N12
47 45 46 syl N2N4N4N4N12N4N12
48 11 40 47 mp2and N2N4N12