Metamath Proof Explorer


Theorem fldiv4lem1div2

Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021)

Ref Expression
Assertion fldiv4lem1div2 NN4N12

Proof

Step Hyp Ref Expression
1 elnn1uz2 NN=1N2
2 1lt4 1<4
3 1nn0 10
4 4nn 4
5 divfl0 1041<414=0
6 3 4 5 mp2an 1<414=0
7 2 6 mpbi 14=0
8 1re 1
9 4re 4
10 4ne0 40
11 redivcl 144014
12 11 flcld 144014
13 12 zred 144014
14 8 9 10 13 mp3an 14
15 14 eqlei 14=0140
16 7 15 mp1i N=1140
17 fvoveq1 N=1N4=14
18 oveq1 N=1N1=11
19 1m1e0 11=0
20 18 19 eqtrdi N=1N1=0
21 20 oveq1d N=1N12=02
22 2cnne0 220
23 div0 22002=0
24 22 23 ax-mp 02=0
25 21 24 eqtrdi N=1N12=0
26 16 17 25 3brtr4d N=1N4N12
27 fldiv4lem1div2uz2 N2N4N12
28 26 27 jaoi N=1N2N4N12
29 1 28 sylbi NN4N12