Metamath Proof Explorer


Theorem ceilval

Description: The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015)

Ref Expression
Assertion ceilval AA=A

Proof

Step Hyp Ref Expression
1 negeq x=Ax=A
2 1 fveq2d x=Ax=A
3 2 negeqd x=Ax=A
4 df-ceil .=xx
5 negex AV
6 3 4 5 fvmpt AA=A