Metamath Proof Explorer


Theorem divdiv1

Description: Division into a fraction. (Contributed by NM, 31-Dec-2007)

Ref Expression
Assertion divdiv1 ABB0CC0ABC=ABC

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-1ne0 10
3 1 2 pm3.2i 110
4 divdivdiv ABB0CC0110ABC1=A1BC
5 3 4 mpanr2 ABB0CC0ABC1=A1BC
6 5 3impa ABB0CC0ABC1=A1BC
7 div1 CC1=C
8 7 oveq2d CABC1=ABC
9 8 ad2antrl BB0CC0ABC1=ABC
10 9 3adant1 ABB0CC0ABC1=ABC
11 mulrid AA1=A
12 11 oveq1d AA1BC=ABC
13 12 3ad2ant1 ABB0CC0A1BC=ABC
14 6 10 13 3eqtr3d ABB0CC0ABC=ABC