Metamath Proof Explorer
Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
|
|
|
ltnegd.2 |
|
|
|
ltadd1d.3 |
|
|
|
lesubd.4 |
|
|
Assertion |
lesubd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
|
2 |
|
ltnegd.2 |
|
3 |
|
ltadd1d.3 |
|
4 |
|
lesubd.4 |
|
5 |
|
lesub |
|
6 |
1 2 3 5
|
syl3anc |
|
7 |
4 6
|
mpbid |
|