Metamath Proof Explorer


Theorem lesubd

Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
lesubd.4 φ A B C
Assertion lesubd φ C B A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 lesubd.4 φ A B C
5 lesub A B C A B C C B A
6 1 2 3 5 syl3anc φ A B C C B A
7 4 6 mpbid φ C B A