Metamath Proof Explorer


Theorem ltsub23d

Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
ltsub23d.4 φAB<C
Assertion ltsub23d φAC<B

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 ltsub23d.4 φAB<C
5 ltsub23 ABCAB<CAC<B
6 1 2 3 5 syl3anc φAB<CAC<B
7 4 6 mpbid φAC<B